Math Problem Statement

Give me the answer of questions with explanation

Give me the answer of questions with explanation

Solution

Let us solve the derivatives of the given functions step by step.


(i) (5x+3)3(5x + 3)^{-3}

To differentiate, we apply the chain rule: ddx[(u)n]=nun1dudx\frac{d}{dx}[(u)^n] = n \cdot u^{n-1} \cdot \frac{du}{dx}

Here, u=5x+3u = 5x + 3, n=3n = -3, and dudx=5\frac{du}{dx} = 5.

Solution: ddx[(5x+3)3]=3(5x+3)45=15(5x+3)4\frac{d}{dx}[(5x + 3)^{-3}] = -3 \cdot (5x + 3)^{-4} \cdot 5 = -15 \cdot (5x + 3)^{-4}

Final Answer: 15(5x+3)4\boxed{-15 \cdot (5x + 3)^{-4}}


(ii) (23x)5(2 - 3x)^5

Here, we again use the chain rule: ddx[(u)n]=nun1dudx\frac{d}{dx}[(u)^n] = n \cdot u^{n-1} \cdot \frac{du}{dx}

Here, u=23xu = 2 - 3x, n=5n = 5, and dudx=3\frac{du}{dx} = -3.

Solution: ddx[(23x)5]=5(23x)4(3)=15(23x)4\frac{d}{dx}[(2 - 3x)^5] = 5 \cdot (2 - 3x)^4 \cdot (-3) = -15 \cdot (2 - 3x)^4

Final Answer: 15(23x)4\boxed{-15 \cdot (2 - 3x)^4}


(iii) (3+7x)5/3(3 + 7x)^{-5/3}

Here, we use the chain rule: ddx[(u)n]=nun1dudx\frac{d}{dx}[(u)^n] = n \cdot u^{n-1} \cdot \frac{du}{dx}

Here, u=3+7xu = 3 + 7x, n=53n = -\frac{5}{3}, and dudx=7\frac{du}{dx} = 7.

Solution: ddx[(3+7x)5/3]=53(3+7x)8/37=353(3+7x)8/3\frac{d}{dx}[(3 + 7x)^{-5/3}] = -\frac{5}{3} \cdot (3 + 7x)^{-8/3} \cdot 7 = -\frac{35}{3} \cdot (3 + 7x)^{-8/3}

Final Answer: 353(3+7x)8/3\boxed{-\frac{35}{3} \cdot (3 + 7x)^{-8/3}}


(iv) 2x+5\sqrt{2x + 5}

This is equivalent to (2x+5)1/2(2x + 5)^{1/2}. We apply the chain rule again: ddx[(u)n]=nun1dudx\frac{d}{dx}[(u)^n] = n \cdot u^{n-1} \cdot \frac{du}{dx}

Here, u=2x+5u = 2x + 5, n=12n = \frac{1}{2}, and dudx=2\frac{du}{dx} = 2.

Solution: ddx[2x+5]=12(2x+5)1/22=(2x+5)1/2\frac{d}{dx}[\sqrt{2x + 5}] = \frac{1}{2} \cdot (2x + 5)^{-1/2} \cdot 2 = (2x + 5)^{-1/2}

Final Answer: 12x+5\boxed{\frac{1}{\sqrt{2x + 5}}}


(v) 129x\frac{1}{\sqrt{2 - 9x}}

This is equivalent to (29x)1/2(2 - 9x)^{-1/2}. We apply the chain rule: ddx[(u)n]=nun1dudx\frac{d}{dx}[(u)^n] = n \cdot u^{n-1} \cdot \frac{du}{dx}

Here, u=29xu = 2 - 9x, n=12n = -\frac{1}{2}, and dudx=9\frac{du}{dx} = -9.

Solution: ddx[(29x)1/2]=12(29x)3/2(9)=92(29x)3/2\frac{d}{dx}[(2 - 9x)^{-1/2}] = -\frac{1}{2} \cdot (2 - 9x)^{-3/2} \cdot (-9) = \frac{9}{2} \cdot (2 - 9x)^{-3/2}

Final Answer: 92(29x)3/2\boxed{\frac{9}{2} \cdot (2 - 9x)^{-3/2}}


Let me know if you need further clarification or detailed steps. 😊

Follow-Up Questions:

  1. How is the chain rule applied in these problems?
  2. Why does the power decrease by 1 in derivative calculations?
  3. How can you rewrite negative exponents in simpler forms?
  4. What happens when you differentiate a square root function?
  5. How do these rules apply to composite functions in general?

Tip:

Always simplify the function into a power/exponent form before applying the chain rule for easier computation.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Calculus
Differentiation
Chain Rule

Formulas

Derivative of a power function: d/dx[u^n] = n * u^(n-1) * du/dx
Derivative of square root: d/dx[√u] = (1 / 2√u) * du/dx
Rewriting powers and exponents for differentiation

Theorems

Chain Rule

Suitable Grade Level

Grades 11-12