Math Problem Statement

choose the answer

choose the answer

Solution

The problem asks for the derivative with respect to xx of an integral with an upper limit xx and integrand involving f(x2t2)f(x^2 - t^2). Let's solve it step-by-step:


The integral is given as:

ddx0xtf(x2t2)dt\frac{d}{dx} \int_0^x t f(x^2 - t^2) \, dt

Step 1: Leibniz Integral Rule

We use the Leibniz rule for differentiation under the integral sign:

ddxabg(x,t)dt=abg(x,t)xdt+g(x,b)dbdxg(x,a)dadx.\frac{d}{dx} \int_a^b g(x, t) \, dt = \int_a^b \frac{\partial g(x, t)}{\partial x} \, dt + g(x, b) \cdot \frac{db}{dx} - g(x, a) \cdot \frac{da}{dx}.

Here:

  • g(x,t)=tf(x2t2)g(x, t) = t f(x^2 - t^2),
  • a=0a = 0 (constant, so dadx=0\frac{da}{dx} = 0),
  • b=xb = x (so dbdx=1\frac{db}{dx} = 1).

Thus:

ddx0xtf(x2t2)dt=0xx(tf(x2t2))dt+tf(x2t2)t=x.\frac{d}{dx} \int_0^x t f(x^2 - t^2) \, dt = \int_0^x \frac{\partial}{\partial x} \big(t f(x^2 - t^2)\big) \, dt + t f(x^2 - t^2) \big|_{t = x}.


Step 2: Compute Partial Derivative

The partial derivative of the integrand tf(x2t2)t f(x^2 - t^2) with respect to xx is:

x(tf(x2t2))=tf(x2t2)x(x2t2),\frac{\partial}{\partial x} \big(t f(x^2 - t^2)\big) = t \cdot f'(x^2 - t^2) \cdot \frac{\partial}{\partial x}(x^2 - t^2),

where:

x(x2t2)=2x.\frac{\partial}{\partial x}(x^2 - t^2) = 2x.

Thus:

x(tf(x2t2))=2xtf(x2t2).\frac{\partial}{\partial x} \big(t f(x^2 - t^2)\big) = 2x t f'(x^2 - t^2).


Step 3: Evaluate the Boundary Term

At t=xt = x, the boundary term tf(x2t2)t=xt f(x^2 - t^2) \big|_{t = x} becomes:

tf(x2t2)t=x=xf(x2x2)=xf(0).t f(x^2 - t^2) \big|_{t = x} = x f(x^2 - x^2) = x f(0).


Step 4: Combine Terms

The derivative becomes:

ddx0xtf(x2t2)dt=0x2xtf(x2t2)dt+xf(0).\frac{d}{dx} \int_0^x t f(x^2 - t^2) \, dt = \int_0^x 2x t f'(x^2 - t^2) \, dt + x f(0).

To match the given options, we consider the case where ff is only dependent on x2x^2. This implies:

[ \int_0^x 2x t f'(x^2 - t^2) dt

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Differentiation
Leibniz Integral Rule
Partial Derivatives

Formulas

Leibniz Integral Rule: \frac{d}{dx} \int_a^b g(x, t) dt = \int_a^b \frac{\partial g(x, t)}{\partial x} dt + g(x, b) \cdot \frac{db}{dx} - g(x, a) \cdot \frac{da}{dx}
Partial Derivative: \frac{\partial}{\partial x} \big(t f(x^2 - t^2)\big) = 2x t f'(x^2 - t^2)

Theorems

Leibniz Rule for Differentiation under the Integral Sign

Suitable Grade Level

College/Advanced