Math Problem Statement

Calculate \( \frac{d}{dx} \int_{-2x}^{2x} t^2 \sin(t^2) \, dt \) and select the correct option from the choices provided.

Solution

To solve this problem, we need to compute the derivative of the integral:

ddx2x2xt2sin(t2)dt.\frac{d}{dx} \int_{-2x}^{2x} t^2 \sin(t^2) \, dt.

Step 1: Leibniz Rule

The derivative of a definite integral with variable limits is handled using the Leibniz rule: ddxa(x)b(x)f(t)dt=f(b(x))b(x)f(a(x))a(x).\frac{d}{dx} \int_{a(x)}^{b(x)} f(t) \, dt = f(b(x)) \cdot b'(x) - f(a(x)) \cdot a'(x). Here, f(t)=t2sin(t2)f(t) = t^2 \sin(t^2), a(x)=2xa(x) = -2x, and b(x)=2xb(x) = 2x.

Step 2: Applying the Rule

First, calculate the contributions of the upper and lower limits:

  • For b(x)=2xb(x) = 2x: f(b(x))=(2x)2sin((2x)2)=4x2sin(4x2),b(x)=2.f(b(x)) = (2x)^2 \sin((2x)^2) = 4x^2 \sin(4x^2), \quad b'(x) = 2.

  • For a(x)=2xa(x) = -2x: f(a(x))=(2x)2sin((2x)2)=4x2sin(4x2),a(x)=2.f(a(x)) = (-2x)^2 \sin((-2x)^2) = 4x^2 \sin(4x^2), \quad a'(x) = -2.

Substitute these into the Leibniz rule: [ \frac{d}{dx} \int_{-2x}^{2x} t^2 \sin(t^2) , dt = \big[4x^2 \sin(4x^2) \cdot 2\big] - \big[4x^2 \sin(4x^2) \cdot (-2)\big]. ]

Step 3: Simplify

ddx2x2xt2sin(t2)dt=8x2sin(4x2)+8x2sin(4x2).\frac{d}{dx} \int_{-2x}^{2x} t^2 \sin(t^2) \, dt = 8x^2 \sin(4x^2) + 8x^2 \sin(4x^2).

ddx2x2xt2sin(t2)dt=16x2sin(4x2).\frac{d}{dx} \int_{-2x}^{2x} t^2 \sin(t^2) \, dt = 16x^2 \sin(4x^2).

Final Answer:

The correct choice is: 16x2sin(4x2).\boxed{16x^2 \sin(4x^2)}.

Do you want a detailed explanation for any step, or would you like to explore related questions? Here are some suggestions:

  1. How does the Leibniz rule work for different limits of integration?
  2. What happens if the integral had only one variable limit?
  3. How do trigonometric functions affect integration and differentiation?
  4. What are the real-world applications of integrals with variable limits?
  5. Can this method be extended to more complex functions?

Tip: Always check the symmetry of the function when dealing

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Calculus
Definite Integration
Differentiation
Leibniz Rule

Formulas

Leibniz Rule: \( \frac{d}{dx} \int_{a(x)}^{b(x)} f(t) \, dt = f(b(x)) \cdot b'(x) - f(a(x)) \cdot a'(x) \)

Theorems

Leibniz Integral Rule

Suitable Grade Level

Undergraduate Calculus or Advanced High School Calculus