Math Problem Statement

Given the function f, of, x, equals, start fraction, 1, minus, x, divided by, 2, x, squared, minus, 5, end fraction, commaf(x)=2x2−51−x​, find f, prime, of, xf′(x) in simplified form.

Answer

Attempt 1 out of 2

Solution

We are asked to find the derivative of the function f(x)=1x2x25f(x) = \frac{1 - x}{2x^2 - 5}.

To do this, we'll use the quotient rule for derivatives, which is given by:

(u(x)v(x))=u(x)v(x)u(x)v(x)(v(x))2\left( \frac{u(x)}{v(x)} \right)' = \frac{u'(x)v(x) - u(x)v'(x)}{(v(x))^2}

where:

  • u(x)=1xu(x) = 1 - x
  • v(x)=2x25v(x) = 2x^2 - 5

Step 1: Differentiate u(x)u(x) and v(x)v(x)

  • u(x)=ddx(1x)=1u'(x) = \frac{d}{dx}(1 - x) = -1
  • v(x)=ddx(2x25)=4xv'(x) = \frac{d}{dx}(2x^2 - 5) = 4x

Step 2: Apply the quotient rule

Using the quotient rule formula:

f(x)=u(x)v(x)u(x)v(x)(v(x))2f'(x) = \frac{u'(x)v(x) - u(x)v'(x)}{(v(x))^2}

Substitute u(x)u(x), v(x)v(x), u(x)u'(x), and v(x)v'(x) into the formula:

f(x)=1(2x25)(1x)(4x)(2x25)2f'(x) = \frac{-1(2x^2 - 5) - (1 - x)(4x)}{(2x^2 - 5)^2}

Step 3: Simplify the expression

First, expand both the numerator terms:

f(x)=(2x25)(1x)(4x)(2x25)2f'(x) = \frac{- (2x^2 - 5) - (1 - x)(4x)}{(2x^2 - 5)^2} f(x)=2x2+5(4x4x2)(2x25)2f'(x) = \frac{-2x^2 + 5 - (4x - 4x^2)}{(2x^2 - 5)^2} f(x)=2x2+54x+4x2(2x25)2f'(x) = \frac{-2x^2 + 5 - 4x + 4x^2}{(2x^2 - 5)^2}

Combine like terms:

f(x)=2x24x+5(2x25)2f'(x) = \frac{2x^2 - 4x + 5}{(2x^2 - 5)^2}

Thus, the derivative of f(x)f(x) is:

[ f'(x) = \frac

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Calculus
Differentiation
Quotient Rule

Formulas

Quotient Rule: (u(x) / v(x))' = (u'(x)v(x) - u(x)v'(x)) / (v(x))^2

Theorems

-

Suitable Grade Level

Grades 11-12 or early university