Math Problem Statement

Derive the formula for the derivative with respect to x of sec x, csc x, and cot x.

Solution

To derive the formulas for the derivatives of the given functions secx\sec x, cscx\csc x, and cotx\cot x, we will use the basic differentiation rules and trigonometric identities.

(a) Derivative of secx\sec x

Recall that secx=1cosx\sec x = \frac{1}{\cos x}.

Using the quotient rule: ddxsecx=ddx(1cosx)\frac{d}{dx} \sec x = \frac{d}{dx} \left( \frac{1}{\cos x} \right) Let u=1u = 1 and v=cosxv = \cos x, then: ddx(uv)=uvuvv2\frac{d}{dx} \left( \frac{u}{v} \right) = \frac{u'v - uv'}{v^2} Here, u=0u' = 0 and v=sinxv' = -\sin x. So: ddxsecx=0cosx1(sinx)(cosx)2=sinxcos2x=secxtanx\frac{d}{dx} \sec x = \frac{0 \cdot \cos x - 1 \cdot (-\sin x)}{(\cos x)^2} = \frac{\sin x}{\cos^2 x} = \sec x \tan x

(b) Derivative of cscx\csc x

Recall that cscx=1sinx\csc x = \frac{1}{\sin x}.

Using the quotient rule: ddxcscx=ddx(1sinx)\frac{d}{dx} \csc x = \frac{d}{dx} \left( \frac{1}{\sin x} \right) Let u=1u = 1 and v=sinxv = \sin x, then: ddx(uv)=uvuvv2\frac{d}{dx} \left( \frac{u}{v} \right) = \frac{u'v - uv'}{v^2} Here, u=0u' = 0 and v=cosxv' = \cos x. So: ddxcscx=0sinx1cosx(sinx)2=cosxsin2x=cscxcotx\frac{d}{dx} \csc x = \frac{0 \cdot \sin x - 1 \cdot \cos x}{(\sin x)^2} = \frac{-\cos x}{\sin^2 x} = -\csc x \cot x

(c) Derivative of cotx\cot x

Recall that cotx=cosxsinx\cot x = \frac{\cos x}{\sin x}.

Using the quotient rule: ddxcotx=ddx(cosxsinx)\frac{d}{dx} \cot x = \frac{d}{dx} \left( \frac{\cos x}{\sin x} \right) Let u=cosxu = \cos x and v=sinxv = \sin x, then: ddx(uv)=uvuvv2\frac{d}{dx} \left( \frac{u}{v} \right) = \frac{u'v - uv'}{v^2} Here, u=sinxu' = -\sin x and v=cosxv' = \cos x. So: ddxcotx=(sinx)sinxcosxcosx(sinx)2=sin2xcos2xsin2x=(sin2x+cos2x)sin2x=1sin2x=csc2x\frac{d}{dx} \cot x = \frac{(-\sin x) \sin x - \cos x \cos x}{(\sin x)^2} = \frac{-\sin^2 x - \cos^2 x}{\sin^2 x} = \frac{-(\sin^2 x + \cos^2 x)}{\sin^2 x} = \frac{-1}{\sin^2 x} = -\csc^2 x

In summary:

  1. ddxsecx=secxtanx\frac{d}{dx} \sec x = \sec x \tan x
  2. ddxcscx=cscxcotx\frac{d}{dx} \csc x = -\csc x \cot x
  3. ddxcotx=csc2x\frac{d}{dx} \cot x = -\csc^2 x

Would you like any details or have any questions?

Here are five related questions to expand on this topic:

  1. What is the derivative of tanx\tan x?
  2. How can you derive the second derivative of secx\sec x?
  3. What is the integral of secxtanx\sec x \tan x?
  4. Can you find the derivative of sec2x\sec^2 x?
  5. How would you apply the chain rule to find the derivative of sec(ax+b)\sec(ax + b)?

Tip: Always remember to simplify trigonometric expressions using identities when working with derivatives and integrals to make calculations easier.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Differentiation
Trigonometric Functions

Formulas

d/dx(sec x) = sec x * tan x
d/dx(csc x) = -csc x * cot x
d/dx(cot x) = -csc^2 x

Theorems

Quotient Rule
Trigonometric Identities

Suitable Grade Level

Grades 11-12