Find the derivative dy/dx for the function y = e^(1 - x^2) * cos^4(2x + 3).
Solution
Let's find the derivative dxdy for the given function:
y=e1−x2⋅cos4(2x+3)
Step-by-step solution:
Product Rule:
Since y=u⋅v, where u=e1−x2 and v=cos4(2x+3), we use the product rule:
dxdy=dxdu⋅v+u⋅dxdv.
Derivative of u=e1−x2:
The chain rule applies here. Let z=1−x2, so:
dxdu=ez⋅dxdz.
Since dxdz=−2x, we have:
dxdu=e1−x2⋅(−2x).
Derivative of v=cos4(2x+3):
This requires both the chain rule and the power rule. Let w=cos(2x+3), so:
dxdv=4⋅w3⋅dxdw.
Now, dxdw=−sin(2x+3)⋅dxd(2x+3)=−sin(2x+3)⋅2. Substituting:
dxdv=4⋅cos3(2x+3)⋅(−sin(2x+3))⋅2.
Simplify:
dxdv=−8cos3(2x+3)sin(2x+3).
Combine using the product rule:
Substitute dxdu and dxdv into the product rule:
dxdy=(e1−x2⋅(−2x))⋅cos4(2x+3)+e1−x2⋅(−8cos3(2x+3)sin(2x+3)).
Simplify the expression:dxdy=−2xe1−x2cos4(2x+3)−8e1−x2cos3(2x+3)sin(2x+3).