Math Problem Statement

Find the derivative dy/dx for the function y = e^(1 - x^2) * cos^4(2x + 3).

Solution

Let's find the derivative dydx\frac{dy}{dx} for the given function:

y=e1x2cos4(2x+3)y = e^{1 - x^2} \cdot \cos^4(2x + 3)

Step-by-step solution:

  1. Product Rule:
    Since y=uvy = u \cdot v, where u=e1x2u = e^{1 - x^2} and v=cos4(2x+3)v = \cos^4(2x + 3), we use the product rule: dydx=dudxv+udvdx.\frac{dy}{dx} = \frac{du}{dx} \cdot v + u \cdot \frac{dv}{dx}.

  2. Derivative of u=e1x2u = e^{1 - x^2}:
    The chain rule applies here. Let z=1x2z = 1 - x^2, so: dudx=ezdzdx.\frac{du}{dx} = e^z \cdot \frac{dz}{dx}. Since dzdx=2x\frac{dz}{dx} = -2x, we have: dudx=e1x2(2x).\frac{du}{dx} = e^{1 - x^2} \cdot (-2x).

  3. Derivative of v=cos4(2x+3)v = \cos^4(2x + 3):
    This requires both the chain rule and the power rule. Let w=cos(2x+3)w = \cos(2x + 3), so: dvdx=4w3dwdx.\frac{dv}{dx} = 4 \cdot w^3 \cdot \frac{dw}{dx}. Now, dwdx=sin(2x+3)ddx(2x+3)=sin(2x+3)2\frac{dw}{dx} = -\sin(2x + 3) \cdot \frac{d}{dx}(2x + 3) = -\sin(2x + 3) \cdot 2. Substituting: dvdx=4cos3(2x+3)(sin(2x+3))2.\frac{dv}{dx} = 4 \cdot \cos^3(2x + 3) \cdot (-\sin(2x + 3)) \cdot 2. Simplify: dvdx=8cos3(2x+3)sin(2x+3).\frac{dv}{dx} = -8 \cos^3(2x + 3) \sin(2x + 3).

  4. Combine using the product rule: Substitute dudx\frac{du}{dx} and dvdx\frac{dv}{dx} into the product rule: dydx=(e1x2(2x))cos4(2x+3)+e1x2(8cos3(2x+3)sin(2x+3)).\frac{dy}{dx} = \big(e^{1 - x^2} \cdot (-2x)\big) \cdot \cos^4(2x + 3) + e^{1 - x^2} \cdot \big(-8 \cos^3(2x + 3) \sin(2x + 3)\big).

  5. Simplify the expression: dydx=2xe1x2cos4(2x+3)8e1x2cos3(2x+3)sin(2x+3).\frac{dy}{dx} = -2x e^{1 - x^2} \cos^4(2x + 3) - 8 e^{1 - x^2} \cos^3(2x + 3) \sin(2x + 3).

Final Answer:

dydx=2xe1x2cos4(2x+3)8e1x2cos3(2x+3)sin(2x+3).\frac{dy}{dx} = -2x e^{1 - x^2} \cos^4(2x + 3) - 8 e^{1 - x^2} \cos^3(2x + 3) \sin(2x + 3).

Would you like a detailed explanation of any specific part?


Related Questions:

  1. How do you apply the product rule in similar problems?
  2. Can we simplify the trigonometric term cos4\cos^4 further using identities?
  3. How does the chain rule work for exponential functions like ef(x)e^{f(x)}?
  4. What are some strategies to simplify derivatives with trigonometric powers?
  5. Can you explain how sin(2x+3)\sin(2x + 3) and cos(2x+3)\cos(2x + 3) behave graphically in this problem?

Tip:

When differentiating composite functions, always identify the "outer" and "inner" layers and use the chain rule systematically to avoid errors.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Calculus
Derivatives
Exponential Functions
Trigonometric Functions
Product Rule
Chain Rule

Formulas

Product Rule: (uv)' = u'v + uv'
Chain Rule: (f(g(x)))' = f'(g(x)) * g'(x)

Theorems

Chain Rule
Power Rule

Suitable Grade Level

Grades 11-12 or Introductory University Calculus