Math Problem Statement

Evaluate the following integrals.

(a)

3

/ 2

0

5

1 − x2

 dx

(b)

1

0

x

 (1 + 6x2 ) dx

Solution

Let’s evaluate the two integrals step by step.


(a) 03/21x2dx\int_0^{\sqrt{3}/2} \sqrt{1 - x^2} \, dx

This integral resembles the formula for the area of a circular segment. Specifically, 1x2\sqrt{1 - x^2} corresponds to the upper semicircle of a unit circle. The integral can be directly computed using a trigonometric substitution:

  1. Substitution: Let x=sinθx = \sin \theta, so dx=cosθdθdx = \cos \theta \, d\theta and 1x2=cosθ\sqrt{1 - x^2} = \cos \theta.

    The limits transform as: x=0    θ=0,x=3/2    θ=π/3x = 0 \implies \theta = 0, \quad x = \sqrt{3}/2 \implies \theta = \pi/3

  2. Rewrite the integral: 03/21x2dx=0π/3cos2θdθ\int_0^{\sqrt{3}/2} \sqrt{1 - x^2} \, dx = \int_0^{\pi/3} \cos^2 \theta \, d\theta

  3. Simplify using a trigonometric identity: cos2θ=1+cos(2θ)2\cos^2 \theta = \frac{1 + \cos(2\theta)}{2}

    Substitute: 0π/3cos2θdθ=0π/31+cos(2θ)2dθ\int_0^{\pi/3} \cos^2 \theta \, d\theta = \int_0^{\pi/3} \frac{1 + \cos(2\theta)}{2} \, d\theta

    Break into two integrals: =120π/31dθ+120π/3cos(2θ)dθ= \frac{1}{2} \int_0^{\pi/3} 1 \, d\theta + \frac{1}{2} \int_0^{\pi/3} \cos(2\theta) \, d\theta

  4. Evaluate each term:

    • First term: 120π/31dθ=12[θ]0π/3=12π3=π6\frac{1}{2} \int_0^{\pi/3} 1 \, d\theta = \frac{1}{2} \cdot \left[\theta\right]_0^{\pi/3} = \frac{1}{2} \cdot \frac{\pi}{3} = \frac{\pi}{6}

    • Second term: 120π/3cos(2θ)dθ=12sin(2θ)20π/3=14[sin(2π3)sin(0)]\frac{1}{2} \int_0^{\pi/3} \cos(2\theta) \, d\theta = \frac{1}{2} \cdot \frac{\sin(2\theta)}{2} \Big|_0^{\pi/3} = \frac{1}{4} \left[\sin\left(\frac{2\pi}{3}\right) - \sin(0)\right]

      Since sin(2π3)=3/2\sin\left(\frac{2\pi}{3}\right) = \sqrt{3}/2, we get: =1432=38= \frac{1}{4} \cdot \frac{\sqrt{3}}{2} = \frac{\sqrt{3}}{8}

  5. Combine results: 03/21x2dx=π6+38\int_0^{\sqrt{3}/2} \sqrt{1 - x^2} \, dx = \frac{\pi}{6} + \frac{\sqrt{3}}{8}


(b) 01x(1+6x2)dx\int_0^1 \sqrt{x} (1 + 6x^2) \, dx

  1. Simplify: Rewrite x=x1/2\sqrt{x} = x^{1/2}: 01x(1+6x2)dx=01x1/2dx+601x1/2x2dx\int_0^1 \sqrt{x} (1 + 6x^2) \, dx = \int_0^1 x^{1/2} \, dx + 6 \int_0^1 x^{1/2} x^2 \, dx

    Combine powers of xx: =01x1/2dx+601x5/2dx= \int_0^1 x^{1/2} \, dx + 6 \int_0^1 x^{5/2} \, dx

  2. Evaluate each term:

    • First term: 01x1/2dx=[x3/23/2]01=23x3/201=23\int_0^1 x^{1/2} \, dx = \left[\frac{x^{3/2}}{3/2}\right]_0^1 = \frac{2}{3} x^{3/2} \Big|_0^1 = \frac{2}{3}

    • Second term: 01x5/2dx=[x7/27/2]01=27x7/201=27\int_0^1 x^{5/2} \, dx = \left[\frac{x^{7/2}}{7/2}\right]_0^1 = \frac{2}{7} x^{7/2} \Big|_0^1 = \frac{2}{7}

  3. Combine results: 01x(1+6x2)dx=23+627=23+127\int_0^1 \sqrt{x} (1 + 6x^2) \, dx = \frac{2}{3} + 6 \cdot \frac{2}{7} = \frac{2}{3} + \frac{12}{7}

    Find a common denominator: 23=1421,127=3621\frac{2}{3} = \frac{14}{21}, \quad \frac{12}{7} = \frac{36}{21}

    Add: 1421+3621=5021\frac{14}{21} + \frac{36}{21} = \frac{50}{21}


Final Answers:

(a) π6+38\frac{\pi}{6} + \frac{\sqrt{3}}{8}

(b) 5021\frac{50}{21}


Would you like further clarification or a visual representation of these computations?
Here are 5 related questions to deepen understanding:

  1. How does trigonometric substitution simplify integrals involving radicals?
  2. What is the geometric interpretation of the integral in part (a)?
  3. Can you derive a formula for the area under a semicircle using definite integrals?
  4. How does the power rule apply in fractional powers for part (b)?
  5. Why is it important to properly combine fractions when solving integrals?

Tip: Always check the limits of substitution carefully, especially when transforming definite integrals.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Definite Integration
Trigonometric Substitution
Power Rule for Integration
Simplification of Rational Fractions

Formulas

∫ √(1 - x²) dx using trigonometric substitution
∫ x^n dx = x^(n+1)/(n+1) + C (n ≠ -1)

Theorems

Fundamental Theorem of Calculus
Trigonometric Identity: cos²θ = (1 + cos(2θ))/2

Suitable Grade Level

College Level (Calculus 1)