Math Problem Statement
Evaluate the following integrals.
(a)
√
3
/ 2
∫
0
5
√
1 − x2
dx
(b)
1
∫
0
√
x
(1 + 6x2 ) dx
Solution
Ask a new question for Free
By Image
Drop file here or Click Here to upload
Math Problem Analysis
Mathematical Concepts
Definite Integration
Trigonometric Substitution
Power Rule for Integration
Simplification of Rational Fractions
Formulas
∫ √(1 - x²) dx using trigonometric substitution
∫ x^n dx = x^(n+1)/(n+1) + C (n ≠ -1)
Theorems
Fundamental Theorem of Calculus
Trigonometric Identity: cos²θ = (1 + cos(2θ))/2
Suitable Grade Level
College Level (Calculus 1)
Related Recommendation
Solve the Integral with Trigonometric Substitution and Inverse Functions
Evaluating the Integral ∫_0^1 √(1 - x^2) dx Using Trigonometric Substitution
Evaluate the Integral of x^2 * sqrt(1 - x^2) Step-by-Step
Evaluating Definite Integrals with Trigonometric Substitution
Integral of sqrt(x^2 - 1) using Trigonometric Substitution