Math Problem Statement

Evaluate the following integral using trigonometric substitution.

Integral from 0 to StartFraction 5 StartRoot 3 EndRoot Over 2 EndFraction StartFraction dx Over StartRoot 25 minus x squared EndRoot EndFraction∫0532dx25−x2

Question content area bottom

Part 1

What substitution will be the most helpful for evaluating this​ integral?

A.

xequals=5 font size decreased by 11 secant theta5 secθ

B.

xequals=5 tangent theta5tanθ

C.

xequals=5 font size decreased by 11 sine theta5 sinθ

Your answer is correct.

Part 2

Rewrite the given integral using this substitution.

Integral from 0 to StartFraction 5 StartRoot 3 EndRoot Over 2 EndFraction StartFraction dx Over StartRoot 25 minus x squared EndRoot EndFraction∫0532dx25−x2equals=Integral from 0 to nothing left parenthesis nothing right parenthesis d theta∫0enter your response hereenter your response here dθ

​(Type exact​ answers.)

Solution

Part 1: Choosing the Trigonometric Substitution

Given the integral:
I=0532dx25x2I = \int_0^{\frac{5\sqrt{3}}{2}} \frac{dx}{\sqrt{25 - x^2}} we recognize the expression 25x2\sqrt{25 - x^2}, which suggests a sine substitution:
x=5sinθx = 5\sin\theta Thus, the correct answer is C. x=5sinθx = 5\sin\theta.


Part 2: Rewriting the Integral Using Substitution

Using the substitution x=5sinθx = 5\sin\theta, we differentiate both sides:

dx=5cosθdθdx = 5\cos\theta \, d\theta

Also, substituting into the square root term:

25x2=2525sin2θ=25(1sin2θ)=25cos2θ=5cosθ.\sqrt{25 - x^2} = \sqrt{25 - 25\sin^2\theta} = \sqrt{25(1 - \sin^2\theta)} = \sqrt{25\cos^2\theta} = 5\cos\theta.

Rewriting the integral in terms of θ\theta:

I=05325cosθdθ5cosθI = \int_0^{\frac{5\sqrt{3}}{2}} \frac{5\cos\theta \, d\theta}{5\cos\theta}

Since 5cosθ5\cos\theta cancels in the numerator and denominator:

I=dθ.I = \int d\theta.

Now, we need to find the new limits in terms of θ\theta:

  • When x=0x = 0: 0=5sinθsinθ=0θ=0.0 = 5\sin\theta \Rightarrow \sin\theta = 0 \Rightarrow \theta = 0.

  • When x=532x = \frac{5\sqrt{3}}{2}: 532=5sinθsinθ=32.\frac{5\sqrt{3}}{2} = 5\sin\theta \Rightarrow \sin\theta = \frac{\sqrt{3}}{2}. Since sinθ=32\sin\theta = \frac{\sqrt{3}}{2} corresponds to θ=π3\theta = \frac{\pi}{3},

the integral becomes:

I=0π3dθ.I = \int_0^{\frac{\pi}{3}} d\theta.

Let me know if you would like further clarifications!


Related Questions

  1. How do you evaluate the integral dxa2x2\int \frac{dx}{\sqrt{a^2 - x^2}}?
  2. Why do we use trigonometric substitution in integrals involving square roots?
  3. How can you verify the correctness of a substitution?
  4. What are the three main trigonometric substitutions and when are they used?
  5. Can we solve this integral using a different method, like a geometric approach?

Tip: Always check the limits carefully when changing variables in definite integrals!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Integral Calculus
Trigonometric Substitution
Definite Integrals

Formulas

Integral of 1/√(a^2 - x^2)
Trigonometric Substitution: x = a sin(θ)

Theorems

Trigonometric Substitution
Change of Limits in Definite Integrals

Suitable Grade Level

Grades 11-12