We are tasked with evaluating the definite integral:
I = ∫ L / 2 L ( π − x ) sin ( π n x L ) d x I = \int_{L/2}^{L} \left( \pi - x \right) \sin \left( \frac{\pi n x}{L} \right) \, dx I = ∫ L /2 L ( π − x ) sin ( L πn x ) d x
Step 1: Distribute the terms
First, we distribute the ( π − x ) (\pi - x) ( π − x ) term over the sin ( π n x L ) \sin\left( \frac{\pi n x}{L} \right) sin ( L πn x ) function:
I = ∫ L / 2 L π sin ( π n x L ) d x − ∫ L / 2 L x sin ( π n x L ) d x I = \int_{L/2}^{L} \pi \sin \left( \frac{\pi n x}{L} \right) \, dx - \int_{L/2}^{L} x \sin \left( \frac{\pi n x}{L} \right) \, dx I = ∫ L /2 L π sin ( L πn x ) d x − ∫ L /2 L x sin ( L πn x ) d x
We will handle each of these integrals separately.
Step 2: Solve the first integral
Let's first solve the integral:
I 1 = ∫ L / 2 L π sin ( π n x L ) d x I_1 = \int_{L/2}^{L} \pi \sin \left( \frac{\pi n x}{L} \right) \, dx I 1 = ∫ L /2 L π sin ( L πn x ) d x
The integral of sin ( π n x L ) \sin \left( \frac{\pi n x}{L} \right) sin ( L πn x ) with respect to x x x is:
∫ sin ( π n x L ) d x = − L π n cos ( π n x L ) \int \sin \left( \frac{\pi n x}{L} \right) \, dx = -\frac{L}{\pi n} \cos \left( \frac{\pi n x}{L} \right) ∫ sin ( L πn x ) d x = − πn L cos ( L πn x )
Thus,
I 1 = π [ − L π n cos ( π n x L ) ] L / 2 L I_1 = \pi \left[ -\frac{L}{\pi n} \cos \left( \frac{\pi n x}{L} \right) \right]_{L/2}^{L} I 1 = π [ − πn L cos ( L πn x ) ] L /2 L
Evaluating this from x = L / 2 x = L/2 x = L /2 to x = L x = L x = L :
I 1 = − L n ( cos ( π n ) − cos ( π n 2 ) ) I_1 = -\frac{L}{n} \left( \cos \left( \pi n \right) - \cos \left( \frac{\pi n}{2} \right) \right) I 1 = − n L ( cos ( πn ) − cos ( 2 πn ) )
Since cos ( π n ) = ( − 1 ) n \cos(\pi n) = (-1)^n cos ( πn ) = ( − 1 ) n , we get:
I 1 = − L n ( ( − 1 ) n − cos ( π n 2 ) ) I_1 = -\frac{L}{n} \left( (-1)^n - \cos \left( \frac{\pi n}{2} \right) \right) I 1 = − n L ( ( − 1 ) n − cos ( 2 πn ) )
Step 3: Solve the second integral
Now, let's solve the second integral:
I 2 = ∫ L / 2 L x sin ( π n x L ) d x I_2 = \int_{L/2}^{L} x \sin \left( \frac{\pi n x}{L} \right) \, dx I 2 = ∫ L /2 L x sin ( L πn x ) d x
We can solve this using integration by parts. Let:
u = x u = x u = x (so d u = d x du = dx d u = d x )
d v = sin ( π n x L ) d x dv = \sin \left( \frac{\pi n x}{L} \right) \, dx d v = sin ( L πn x ) d x (so v = − L π n cos ( π n x L ) v = -\frac{L}{\pi n} \cos \left( \frac{\pi n x}{L} \right) v = − πn L cos ( L πn x ) )
Then, applying the integration by parts formula ∫ u d v = u v − ∫ v d u \int u \, dv = uv - \int v \, du ∫ u d v = uv − ∫ v d u , we get:
I 2 = − L π n [ x cos ( π n x L ) ] L / 2 L + L π n ∫ L / 2 L cos ( π n x L ) d x I_2 = -\frac{L}{\pi n} \left[ x \cos \left( \frac{\pi n x}{L} \right) \right]_{L/2}^{L} + \frac{L}{\pi n} \int_{L/2}^{L} \cos \left( \frac{\pi n x}{L} \right) \, dx I 2 = − πn L [ x cos ( L πn x ) ] L /2 L + πn L ∫ L /2 L cos ( L πn x ) d x
First, evaluate the boundary terms:
[ x cos ( π n x L ) ] L / 2 L = L cos ( π n ) − L 2 cos ( π n 2 ) \left[ x \cos \left( \frac{\pi n x}{L} \right) \right]_{L/2}^{L} = L \cos (\pi n) - \frac{L}{2} \cos \left( \frac{\pi n}{2} \right) [ x cos ( L πn x ) ] L /2 L = L cos ( πn ) − 2 L cos ( 2 πn )
Thus,
I 2 = − L π n ( L ( − 1 ) n − L 2 cos ( π n 2 ) ) I_2 = -\frac{L}{\pi n} \left( L (-1)^n - \frac{L}{2} \cos \left( \frac{\pi n}{2} \right) \right) I 2 = − πn L ( L ( − 1 ) n − 2 L cos ( 2 πn ) )
Next, the remaining integral:
∫ L / 2 L cos ( π n x L ) d x = L π n [ sin ( π n x L ) ] L / 2 L \int_{L/2}^{L} \cos \left( \frac{\pi n x}{L} \right) \, dx = \frac{L}{\pi n} \left[ \sin \left( \frac{\pi n x}{L} \right) \right]_{L/2}^{L} ∫ L /2 L cos ( L πn x ) d x = πn L [ sin ( L πn x ) ] L /2 L
Evaluating:
sin ( π n x L ) ∣ L / 2 L = sin ( π n ) − sin ( π n 2 ) \sin \left( \frac{\pi n x}{L} \right) \Big|_{L/2}^{L} = \sin(\pi n) - \sin \left( \frac{\pi n}{2} \right) sin ( L πn x ) L /2 L = sin ( πn ) − sin ( 2 πn )
Since sin ( π n ) = 0 \sin (\pi n) = 0 sin ( πn ) = 0 , this term becomes:
∫ L / 2 L cos ( π n x L ) d x = − L π n sin ( π n 2 ) \int_{L/2}^{L} \cos \left( \frac{\pi n x}{L} \right) \, dx = - \frac{L}{\pi n} \sin \left( \frac{\pi n}{2} \right) ∫ L /2 L cos ( L πn x ) d x = − πn L sin ( 2 πn )
So, the final expression for I 2 I_2 I 2 becomes:
I 2 = − L π n ( L ( − 1 ) n − L 2 cos ( π n 2 ) ) + L 2 π 2 n 2 sin ( π n 2 ) I_2 = -\frac{L}{\pi n} \left( L (-1)^n - \frac{L}{2} \cos \left( \frac{\pi n}{2} \right) \right) + \frac{L^2}{\pi^2 n^2} \sin \left( \frac{\pi n}{2} \right) I 2 = − πn L ( L ( − 1 ) n − 2 L cos ( 2 πn ) ) + π 2 n 2 L 2 sin ( 2 πn )
Step 4: Combine the results
Now, combine I 1 I_1 I 1 and I 2 I_2 I 2 :
I = I 1 − I 2 I = I_1 - I_2 I = I 1 − I 2
After substituting the expressions for I 1 I_1 I 1 and I 2 I_2 I 2 , we get the final result. You can simplify this expression based on the specific value of n n n to get a numerical result.
Would you like to see the final result for a specific n n n or any further simplification?