Math Problem Statement

integrate((pi-x)sin(pin*x/L)dx) from L/2 to L

Solution

We are tasked with evaluating the definite integral:

I=L/2L(πx)sin(πnxL)dxI = \int_{L/2}^{L} \left( \pi - x \right) \sin \left( \frac{\pi n x}{L} \right) \, dx

Step 1: Distribute the terms

First, we distribute the (πx)(\pi - x) term over the sin(πnxL)\sin\left( \frac{\pi n x}{L} \right) function:

I=L/2Lπsin(πnxL)dxL/2Lxsin(πnxL)dxI = \int_{L/2}^{L} \pi \sin \left( \frac{\pi n x}{L} \right) \, dx - \int_{L/2}^{L} x \sin \left( \frac{\pi n x}{L} \right) \, dx

We will handle each of these integrals separately.

Step 2: Solve the first integral

Let's first solve the integral:

I1=L/2Lπsin(πnxL)dxI_1 = \int_{L/2}^{L} \pi \sin \left( \frac{\pi n x}{L} \right) \, dx

The integral of sin(πnxL)\sin \left( \frac{\pi n x}{L} \right) with respect to xx is:

sin(πnxL)dx=Lπncos(πnxL)\int \sin \left( \frac{\pi n x}{L} \right) \, dx = -\frac{L}{\pi n} \cos \left( \frac{\pi n x}{L} \right)

Thus,

I1=π[Lπncos(πnxL)]L/2LI_1 = \pi \left[ -\frac{L}{\pi n} \cos \left( \frac{\pi n x}{L} \right) \right]_{L/2}^{L}

Evaluating this from x=L/2x = L/2 to x=Lx = L:

I1=Ln(cos(πn)cos(πn2))I_1 = -\frac{L}{n} \left( \cos \left( \pi n \right) - \cos \left( \frac{\pi n}{2} \right) \right)

Since cos(πn)=(1)n\cos(\pi n) = (-1)^n, we get:

I1=Ln((1)ncos(πn2))I_1 = -\frac{L}{n} \left( (-1)^n - \cos \left( \frac{\pi n}{2} \right) \right)

Step 3: Solve the second integral

Now, let's solve the second integral:

I2=L/2Lxsin(πnxL)dxI_2 = \int_{L/2}^{L} x \sin \left( \frac{\pi n x}{L} \right) \, dx

We can solve this using integration by parts. Let:

  • u=xu = x (so du=dxdu = dx)
  • dv=sin(πnxL)dxdv = \sin \left( \frac{\pi n x}{L} \right) \, dx (so v=Lπncos(πnxL)v = -\frac{L}{\pi n} \cos \left( \frac{\pi n x}{L} \right))

Then, applying the integration by parts formula udv=uvvdu\int u \, dv = uv - \int v \, du, we get:

I2=Lπn[xcos(πnxL)]L/2L+LπnL/2Lcos(πnxL)dxI_2 = -\frac{L}{\pi n} \left[ x \cos \left( \frac{\pi n x}{L} \right) \right]_{L/2}^{L} + \frac{L}{\pi n} \int_{L/2}^{L} \cos \left( \frac{\pi n x}{L} \right) \, dx

First, evaluate the boundary terms:

[xcos(πnxL)]L/2L=Lcos(πn)L2cos(πn2)\left[ x \cos \left( \frac{\pi n x}{L} \right) \right]_{L/2}^{L} = L \cos (\pi n) - \frac{L}{2} \cos \left( \frac{\pi n}{2} \right)

Thus,

I2=Lπn(L(1)nL2cos(πn2))I_2 = -\frac{L}{\pi n} \left( L (-1)^n - \frac{L}{2} \cos \left( \frac{\pi n}{2} \right) \right)

Next, the remaining integral:

L/2Lcos(πnxL)dx=Lπn[sin(πnxL)]L/2L\int_{L/2}^{L} \cos \left( \frac{\pi n x}{L} \right) \, dx = \frac{L}{\pi n} \left[ \sin \left( \frac{\pi n x}{L} \right) \right]_{L/2}^{L}

Evaluating:

sin(πnxL)L/2L=sin(πn)sin(πn2)\sin \left( \frac{\pi n x}{L} \right) \Big|_{L/2}^{L} = \sin(\pi n) - \sin \left( \frac{\pi n}{2} \right)

Since sin(πn)=0\sin (\pi n) = 0, this term becomes:

L/2Lcos(πnxL)dx=Lπnsin(πn2)\int_{L/2}^{L} \cos \left( \frac{\pi n x}{L} \right) \, dx = - \frac{L}{\pi n} \sin \left( \frac{\pi n}{2} \right)

So, the final expression for I2I_2 becomes:

I2=Lπn(L(1)nL2cos(πn2))+L2π2n2sin(πn2)I_2 = -\frac{L}{\pi n} \left( L (-1)^n - \frac{L}{2} \cos \left( \frac{\pi n}{2} \right) \right) + \frac{L^2}{\pi^2 n^2} \sin \left( \frac{\pi n}{2} \right)

Step 4: Combine the results

Now, combine I1I_1 and I2I_2:

I=I1I2I = I_1 - I_2

After substituting the expressions for I1I_1 and I2I_2, we get the final result. You can simplify this expression based on the specific value of nn to get a numerical result.

Would you like to see the final result for a specific nn or any further simplification?

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Definite Integrals
Trigonometric Integrals
Integration by Parts

Formulas

Integral of sin(ax) = -1/a * cos(ax)
Integration by parts formula: ∫udv = uv - ∫vdu

Theorems

Integration by Parts
Trigonometric Integration

Suitable Grade Level

Grades 11-12