Math Problem Statement

SOLVE

10 ⁣(t+1)sin(nπt)dt\int_{-1}^0\!\left(t+1\right)\sin\left(n\pi t\right)\,\mathrm{dt}+01 ⁣(t+1)sin(nπt)dt\int_0^1\!\left(-t+1\right)\sin\left(n\pi t\right)\,\mathrm{dt}

Solution

We need to evaluate the following integrals:

I=10 ⁣(t+1)sin(nπt)dt+01 ⁣(t+1)sin(nπt)dtI = \int_{-1}^0\!\left(t+1\right)\sin\left(n\pi t\right)\, dt + \int_0^1\!\left(-t+1\right)\sin\left(n\pi t\right)\, dt

Step 1: Evaluate each integral separately

Let's start by evaluating each integral individually.

Integral 1:

I1=10(t+1)sin(nπt)dtI_1 = \int_{-1}^0 (t+1) \sin(n\pi t) \, dt

Use integration by parts where u=t+1u = t+1 and dv=sin(nπt)dtdv = \sin(n\pi t) \, dt. Then du=dtdu = dt and v=1nπcos(nπt)v = \frac{-1}{n\pi} \cos(n\pi t).

Applying integration by parts:

I1=(1nπ(t+1)cos(nπt))10+1nπ10cos(nπt)dtI_1 = \left. \left(\frac{-1}{n\pi}(t+1)\cos(n\pi t)\right) \right|_{-1}^0 + \frac{1}{n\pi} \int_{-1}^0 \cos(n\pi t)\, dt

Evaluate the boundary terms:

I1=1nπ[(0+1)cos(0)(1+1)cos(nπ)]+1nπ10cos(nπt)dtI_1 = \frac{-1}{n\pi} \left[ (0+1)\cos(0) - (-1+1)\cos(-n\pi) \right] + \frac{1}{n\pi} \int_{-1}^0 \cos(n\pi t)\, dt

Simplifying:

I1=1nπ[1×10×cos(nπ)]+1nπ10cos(nπt)dtI_1 = \frac{-1}{n\pi} \left[ 1 \times 1 - 0 \times \cos(-n\pi) \right] + \frac{1}{n\pi} \int_{-1}^0 \cos(n\pi t)\, dt

I1=1nπ+1nπ10cos(nπt)dtI_1 = \frac{-1}{n\pi} + \frac{1}{n\pi} \int_{-1}^0 \cos(n\pi t)\, dt

The integral of cos(nπt)\cos(n\pi t) is:

sin(nπt)nπ\frac{\sin(n\pi t)}{n\pi}

So:

10cos(nπt)dt=[sin(nπt)nπ]10=sin(0)sin(nπ)nπ=0\int_{-1}^0 \cos(n\pi t)\, dt = \left[\frac{\sin(n\pi t)}{n\pi}\right]_{-1}^0 = \frac{\sin(0) - \sin(-n\pi)}{n\pi} = 0

Thus:

I1=1nπI_1 = \frac{-1}{n\pi}

Integral 2:

I2=01(t+1)sin(nπt)dtI_2 = \int_0^1 (-t+1)\sin(n\pi t)\, dt

Similarly, use integration by parts where u=t+1u = -t+1 and dv=sin(nπt)dtdv = \sin(n\pi t) \, dt. Then du=dtdu = -dt and v=1nπcos(nπt)v = \frac{-1}{n\pi} \cos(n\pi t).

Applying integration by parts:

I2=(1nπ(t+1)cos(nπt))01+1nπ01cos(nπt)dtI_2 = \left. \left(\frac{-1}{n\pi}(-t+1)\cos(n\pi t)\right) \right|_{0}^1 + \frac{1}{n\pi} \int_0^1 \cos(n\pi t)\, dt

Evaluating the boundary terms:

I2=1nπ[(1+1)cos(nπ)(0+1)cos(0)]+1nπ01cos(nπt)dtI_2 = \frac{-1}{n\pi} \left[ (-1+1)\cos(n\pi) - (0+1)\cos(0) \right] + \frac{1}{n\pi} \int_0^1 \cos(n\pi t)\, dt

Simplifying:

I2=1nπ[01×1]+1nπ01cos(nπt)dtI_2 = \frac{-1}{n\pi} \left[ 0 - 1 \times 1 \right] + \frac{1}{n\pi} \int_0^1 \cos(n\pi t)\, dt

I2=1nπ+1nπ×0=1nπI_2 = \frac{1}{n\pi} + \frac{1}{n\pi} \times 0 = \frac{1}{n\pi}

Step 2: Add the integrals

Now, add I1I_1 and I2I_2:

I=I1+I2=1nπ+1nπ=0I = I_1 + I_2 = \frac{-1}{n\pi} + \frac{1}{n\pi} = 0

Final Answer

The value of the integral is 00.

Would you like more details or have any questions?

Here are some related questions:

  1. How does integration by parts work in general?
  2. What are the conditions for integrals to be zero over symmetric intervals?
  3. How does trigonometric integration differ when using substitution vs. parts?
  4. Why are sine and cosine integrals over symmetric intervals often zero?
  5. How does the value of nn affect integrals involving sine and cosine functions?

Tip: When integrating trigonometric functions over symmetric intervals, it's useful to check if the function is odd or even, as this can often lead to simplifications or directly show the integral is zero.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Integration
Trigonometric Functions
Integration by Parts

Formulas

Integration by Parts formula: \( \int u \, dv = uv - \int v \, du \)

Theorems

-

Suitable Grade Level

College Level