Math Problem Statement

0π2 ⁣sin2 xdx\int_0^{\frac{\pi}{2}}\!\,\,\sin^{2\text{ }}x\,\mathrm{d}x

Solution

To evaluate the integral 0π2sin2xdx\int_0^{\frac{\pi}{2}} \sin^2 x \, \mathrm{d}x, we can use a trigonometric identity to simplify the integrand.

Recall the identity: sin2x=1cos(2x)2\sin^2 x = \frac{1 - \cos(2x)}{2}

Thus, the integral becomes: 0π2sin2xdx=0π21cos(2x)2dx\int_0^{\frac{\pi}{2}} \sin^2 x \, \mathrm{d}x = \int_0^{\frac{\pi}{2}} \frac{1 - \cos(2x)}{2} \, \mathrm{d}x

We can split this into two separate integrals: 0π21cos(2x)2dx=120π21dx120π2cos(2x)dx\int_0^{\frac{\pi}{2}} \frac{1 - \cos(2x)}{2} \, \mathrm{d}x = \frac{1}{2} \int_0^{\frac{\pi}{2}} 1 \, \mathrm{d}x - \frac{1}{2} \int_0^{\frac{\pi}{2}} \cos(2x) \, \mathrm{d}x

Now, evaluate each integral separately.

  1. The first integral: 120π21dx=12[x]0π2=12(π20)=π4\frac{1}{2} \int_0^{\frac{\pi}{2}} 1 \, \mathrm{d}x = \frac{1}{2} \left[ x \right]_0^{\frac{\pi}{2}} = \frac{1}{2} \left( \frac{\pi}{2} - 0 \right) = \frac{\pi}{4}

  2. The second integral: 120π2cos(2x)dx\frac{1}{2} \int_0^{\frac{\pi}{2}} \cos(2x) \, \mathrm{d}x

Let u=2xu = 2x, hence du=2dxdu = 2 \, dx and dx=du2dx = \frac{du}{2}. Adjust the limits of integration accordingly: When x=0x = 0, u=0u = 0. When x=π2x = \frac{\pi}{2}, u=πu = \pi.

So, the integral becomes: 120π2cos(2x)dx=12120πcos(u)du=14[sin(u)]0π\frac{1}{2} \int_0^{\frac{\pi}{2}} \cos(2x) \, \mathrm{d}x = \frac{1}{2} \cdot \frac{1}{2} \int_0^{\pi} \cos(u) \, \mathrm{d}u = \frac{1}{4} \left[ \sin(u) \right]_0^{\pi}

14(sin(π)sin(0))=14(00)=0\frac{1}{4} \left( \sin(\pi) - \sin(0) \right) = \frac{1}{4} \left( 0 - 0 \right) = 0

Therefore: 0π2sin2xdx=π40=π4\int_0^{\frac{\pi}{2}} \sin^2 x \, \mathrm{d}x = \frac{\pi}{4} - 0 = \frac{\pi}{4}

So, the final answer is: π4\boxed{\frac{\pi}{4}}

Would you like more details on any step or have any other questions? Here are 5 questions you might be interested in:

  1. How do you derive the trigonometric identity sin2x=1cos(2x)2\sin^2 x = \frac{1 - \cos(2x)}{2}?
  2. Can you explain more about changing the limits of integration?
  3. How do you evaluate definite integrals?
  4. What are other methods to solve sin2xdx\int \sin^2 x \, \mathrm{d}x?
  5. How is the substitution method used in integrals?

Tip: When dealing with trigonometric integrals, using identities to simplify the integrand can make the integral much easier to evaluate.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Integration
Trigonometric Identities
Definite Integrals

Formulas

Trigonometric identity: \( \sin^2 x = \frac{1 - \cos(2x)}{2} \)

Theorems

-

Suitable Grade Level

Advanced High School