Math Problem Statement
<mrow>
<msubsup>
<mo>∫</mo>
<mn>0</mn>
<mn>1</mn>
</msubsup>
</mrow>
<mfrac>
<mrow>
<mn>18</mn>
<msup>
<mi>x</mi>
<mrow>
<mn>17</mn>
</mrow>
</msup>
</mrow>
<mrow>
<msup>
<mi>x</mi>
<mrow>
<mn>18</mn>
</mrow>
</msup>
<mo>+</mo>
<mn>3</mn>
</mrow>
</mfrac>
<mrow>
<mi>d</mi>
<mi>x</mi>
</mrow>
</mstyle>
</math>Solution
To solve the integral
we proceed as follows:
Step 1: Simplify the expression
The integrand is:
Step 2: Substitution
Let:
Thus:
When , .
When , .
Step 3: Update the integral
Substituting and , the integral becomes:
Step 4: Evaluate the integral
The integral of is:
Thus:
Final Answer:
Would you like a more detailed explanation, or do you have any questions?
Here are 5 related questions for practice:
- Evaluate using substitution.
- Solve .
- Find the integral of .
- Evaluate .
- Solve .
Tip: When tackling integrals involving rational functions, substitution often simplifies the problem significantly.
Ask a new question for Free
By Image
Drop file here or Click Here to upload
Math Problem Analysis
Mathematical Concepts
Definite Integrals
Substitution Method in Integration
Logarithmic Functions
Formulas
\(\int \frac{1}{u} \, du = \ln|u| + C\)
Substitution: \(u = x^{18} + 3\), \(du = 18x^{17} \, dx\)
Theorems
Fundamental Theorem of Calculus
Suitable Grade Level
Grades 11-12
Related Recommendation
Evaluate the Integral ∫(16x)/(8x^2 + 2) dx from 0 to 1
Evaluate the Integral ∫₀¹ 1 / [(2 - x)(3 - x)] dx Using Partial Fractions
Evaluate the Integral ∫_2^1 (x^3 + ln(x)) / (x^2 + 2x + 1) dx
Definite Integral of 1/(sqrt(x) + 9*cbrt(x)) from 0 to 1
Solution for the Integral \(\int_0^1 \frac{1}{(2-x)(3-x)}\)