Math Problem Statement

<math xmlns="http://www.w3.org/1998/Math/MathML"> <mstyle displaystyle="true">
<mrow>

  <msubsup>

    <mo>&#x222B;</mo>

    <mn>0</mn>

    <mn>1</mn>

  </msubsup>

</mrow>

<mfrac>

  <mrow>

    <mn>18</mn>

    <msup>

      <mi>x</mi>

      <mrow>

        <mn>17</mn>

      </mrow>

    </msup>

  </mrow>

  <mrow>

    <msup>

      <mi>x</mi>

      <mrow>

        <mn>18</mn>

      </mrow>

    </msup>

    <mo>+</mo>

    <mn>3</mn>

  </mrow>

</mfrac>

<mrow>

  <mi>d</mi>

  <mi>x</mi>

</mrow>
</mstyle> </math>

Solution

To solve the integral

0118x17x18+3dx,\int_0^1 \frac{18x^{17}}{x^{18} + 3} \, dx,

we proceed as follows:

Step 1: Simplify the expression

The integrand is:

18x17x18+3.\frac{18x^{17}}{x^{18} + 3}.

Step 2: Substitution

Let:

u=x18+3,so that dudx=18x17.u = x^{18} + 3, \quad \text{so that } \frac{du}{dx} = 18x^{17}.

Thus:

du=18x17dx.du = 18x^{17} \, dx.

When x=0x = 0, u=3u = 3.

When x=1x = 1, u=118+3=4u = 1^{18} + 3 = 4.

Step 3: Update the integral

Substituting uu and dudu, the integral becomes:

341udu.\int_3^4 \frac{1}{u} \, du.

Step 4: Evaluate the integral

The integral of 1u\frac{1}{u} is:

1udu=lnu+C.\int \frac{1}{u} \, du = \ln|u| + C.

Thus:

341udu=ln(4)ln(3)=ln(43).\int_3^4 \frac{1}{u} \, du = \ln(4) - \ln(3) = \ln\left(\frac{4}{3}\right).

Final Answer:

0118x17x18+3dx=ln(43).\int_0^1 \frac{18x^{17}}{x^{18} + 3} \, dx = \ln\left(\frac{4}{3}\right).

Would you like a more detailed explanation, or do you have any questions?


Here are 5 related questions for practice:

  1. Evaluate 01x4x5+2dx\int_0^1 \frac{x^4}{x^5 + 2} \, dx using substitution.
  2. Solve 011x2+1dx\int_0^1 \frac{1}{x^2 + 1} \, dx.
  3. Find the integral of ab1udu\int_a^b \frac{1}{u} \, du.
  4. Evaluate 01x17dx\int_0^1 x^{17} \, dx.
  5. Solve 1eln(x)dx\int_1^e \ln(x) \, dx.

Tip: When tackling integrals involving rational functions, substitution often simplifies the problem significantly.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Definite Integrals
Substitution Method in Integration
Logarithmic Functions

Formulas

\(\int \frac{1}{u} \, du = \ln|u| + C\)
Substitution: \(u = x^{18} + 3\), \(du = 18x^{17} \, dx\)

Theorems

Fundamental Theorem of Calculus

Suitable Grade Level

Grades 11-12