Math Problem Statement

01124x2+5x+1dx\int_{0}^{1} \frac{12}{4 x^{2}+5 x+1} d x

Solution

We need to evaluate the integral:

I=01124x2+5x+1dxI = \int_{0}^{1} \frac{12}{4x^2 + 5x + 1} \, dx

Step 1: Complete the square for the quadratic in the denominator

The expression in the denominator is 4x2+5x+14x^2 + 5x + 1. To simplify, let's complete the square.

First, write 4x2+5x+14x^2 + 5x + 1 in the form a(xh)2+ka(x - h)^2 + k.

  1. Factor out 4 from the x2x^2 and xx terms:

    4x2+5x+1=4(x2+54x)+14x^2 + 5x + 1 = 4\left(x^2 + \frac{5}{4}x \right) + 1

  2. To complete the square, take half of the coefficient of xx inside the parentheses, square it, and add/subtract the value. Half of 54\frac{5}{4} is 58\frac{5}{8}, and squaring it gives 2564\frac{25}{64}. So, we add and subtract 2564\frac{25}{64} inside the parentheses:

    4(x2+54x+25642564)+14\left(x^2 + \frac{5}{4}x + \frac{25}{64} - \frac{25}{64} \right) + 1

  3. This simplifies to:

    4((x+58)22564)+14\left(\left(x + \frac{5}{8}\right)^2 - \frac{25}{64}\right) + 1

  4. Distribute the 4 and simplify:

    4(x+58)210064+1=4(x+58)210064+6464=4(x+58)236644\left(x + \frac{5}{8}\right)^2 - \frac{100}{64} + 1 = 4\left(x + \frac{5}{8}\right)^2 - \frac{100}{64} + \frac{64}{64} = 4\left(x + \frac{5}{8}\right)^2 - \frac{36}{64}

    =4(x+58)2916= 4\left(x + \frac{5}{8}\right)^2 - \frac{9}{16}

Thus, the denominator becomes:

4x2+5x+1=4(x+58)2+7164x^2 + 5x + 1 = 4\left(x + \frac{5}{8}\right)^2 + \frac{7}{16}

Step 2: Use substitution

Let u=x+58u = x + \frac{5}{8}. Then du=dxdu = dx, and we can transform the limits accordingly:

  • When x=0x = 0, u=58u = \frac{5}{8},
  • When x=1x = 1, u=138u = \frac{13}{8}.

The integral becomes:

I=58138124u2+716duI = \int_{\frac{5}{8}}^{\frac{13}{8}} \frac{12}{4u^2 + \frac{7}{16}} \, du

Factor out the constants:

I=58138124(u2+764)duI = \int_{\frac{5}{8}}^{\frac{13}{8}} \frac{12}{4\left(u^2 + \frac{7}{64}\right)} \, du

I=3581381u2+(78)2duI = 3 \int_{\frac{5}{8}}^{\frac{13}{8}} \frac{1}{u^2 + \left(\frac{\sqrt{7}}{8}\right)^2} \, du

Step 3: Apply the standard integral formula

This is a standard integral of the form:

1x2+a2dx=1aarctan(xa)+C\int \frac{1}{x^2 + a^2} \, dx = \frac{1}{a} \arctan\left(\frac{x}{a}\right) + C

Here, a=78a = \frac{\sqrt{7}}{8}. So the integral becomes:

I=3×87[arctan(8u7)]58138I = \frac{3 \times 8}{\sqrt{7}} \left[\arctan\left(\frac{8u}{\sqrt{7}}\right)\right]_{\frac{5}{8}}^{\frac{13}{8}}

Step 4: Evaluate the limits

Substitute the limits u=138u = \frac{13}{8} and u=58u = \frac{5}{8}:

I=247[arctan(8×1387)arctan(8×587)]I = \frac{24}{\sqrt{7}} \left[\arctan\left(\frac{8 \times \frac{13}{8}}{\sqrt{7}}\right) - \arctan\left(\frac{8 \times \frac{5}{8}}{\sqrt{7}}\right)\right]

I=247[arctan(137)arctan(57)]I = \frac{24}{\sqrt{7}} \left[\arctan\left(\frac{13}{\sqrt{7}}\right) - \arctan\left(\frac{5}{\sqrt{7}}\right)\right]

This is the exact value of the integral.

Would you like me to compute the approximate numerical value for you? Let me know if you want further details or have questions!


Related questions:

  1. What is the arctangent function and how does it apply in integration?
  2. Can you explain how to complete the square for different types of quadratic equations?
  3. How do you evaluate definite integrals involving trigonometric functions?
  4. What are standard integral formulas, and how can they simplify problems?
  5. How does substitution simplify complex integrals?

Tip: Completing the square is a powerful technique to simplify integrals involving quadratic expressions.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Integral Calculus
Quadratic Expressions
Completing the Square
Substitution Method

Formulas

Completing the square for a quadratic expression: ax^2 + bx + c = a(x-h)^2 + k
Standard integral formula: $$\int \frac{1}{x^2 + a^2} dx = \frac{1}{a} \arctan\left(\frac{x}{a}\right) + C$$

Theorems

Arctangent Function in Integration
Definite Integrals

Suitable Grade Level

Undergraduate Calculus