Math Problem Statement

Evaluate the definite integral \( \int_{1}^{10} \frac{2624}{x^2 + x + 1} \, dx \).

Solution

The given integral is:

1102624x2+x+1dx\int_{1}^{10} \frac{2624}{x^2 + x + 1} \, dx

Solution Process:

  1. Analyze the Denominator:
    The denominator is x2+x+1x^2 + x + 1. This quadratic does not factorize easily, so we'll consider completing the square: x2+x+1=(x+12)2+34.x^2 + x + 1 = \left(x + \frac{1}{2}\right)^2 + \frac{3}{4}.

  2. Substitution:
    To simplify, substitute: u=x+12,du=dx.u = x + \frac{1}{2}, \quad du = dx. This shifts the limits of integration: x=1    u=1+12=32,x=10    u=10+12=212.x = 1 \implies u = 1 + \frac{1}{2} = \frac{3}{2}, \quad x = 10 \implies u = 10 + \frac{1}{2} = \frac{21}{2}. The integral becomes: 322122624u2+34du.\int_{\frac{3}{2}}^{\frac{21}{2}} \frac{2624}{u^2 + \frac{3}{4}} \, du.

  3. Factor Adjustment: Factor the denominator to resemble a standard arctangent form: u2+34=u2+(34)2=u2+(32)2.u^2 + \frac{3}{4} = u^2 + \left(\sqrt{\frac{3}{4}}\right)^2 = u^2 + \left(\frac{\sqrt{3}}{2}\right)^2. Rewrite the integral: 322122624(u2+(32)2)du.\int_{\frac{3}{2}}^{\frac{21}{2}} \frac{2624}{\left(u^2 + \left(\frac{\sqrt{3}}{2}\right)^2\right)} \, du.

  4. Standard Arctangent Form: Use the formula: 1x2+a2dx=1aarctan(xa)+C.\int \frac{1}{x^2 + a^2} \, dx = \frac{1}{a} \arctan\left(\frac{x}{a}\right) + C. Here a=32a = \frac{\sqrt{3}}{2}. Thus: 2624u2+(32)2du=262432arctan(2u3).\int \frac{2624}{u^2 + \left(\frac{\sqrt{3}}{2}\right)^2} \, du = \frac{2624}{\frac{\sqrt{3}}{2}} \arctan\left(\frac{2u}{\sqrt{3}}\right). Simplify the coefficient: 262432=262423=52483.\frac{2624}{\frac{\sqrt{3}}{2}} = \frac{2624 \cdot 2}{\sqrt{3}} = \frac{5248}{\sqrt{3}}.

  5. Apply Limits: Substituting back the limits u=32u = \frac{3}{2} and u=212u = \frac{21}{2}: 52483[arctan(22123)arctan(2323)].\frac{5248}{\sqrt{3}} \left[\arctan\left(\frac{2 \cdot \frac{21}{2}}{\sqrt{3}}\right) - \arctan\left(\frac{2 \cdot \frac{3}{2}}{\sqrt{3}}\right)\right].

  6. Final Simplification: Compute: arctan(213) and arctan(33=3),\arctan\left(\frac{21}{\sqrt{3}}\right) \text{ and } \arctan\left(\frac{3}{\sqrt{3}} = \sqrt{3}\right), then substitute them back into the equation for the result.

Would you like me to perform a detailed numerical evaluation?

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Definite Integral
Algebra
Quadratic Denominator
Substitution
Trigonometric Integration

Formulas

\( \int \frac{1}{x^2 + a^2} \, dx = \frac{1}{a} \arctan\left(\frac{x}{a}\right) + C \)

Theorems

Arctangent Integration Formula

Suitable Grade Level

Undergraduate Mathematics