Math Problem Statement

The value of the integer:

01dt(t2+1)(t2+3)\int_{0}^{1}\frac{dt}{(t^{2}+1)(t^{2}+3)}

is:

(1) $\frac{\pi}{4}(1-\frac{\sqrt{3}}{6})$

(2) $\frac{\pi}{2}(\frac{1}{\sqrt{3}}-\frac{1}{2})$

(3) $\frac{\pi}{8}(1-\frac{\sqrt{3}}{6})$

(4) $\frac{\pi}{4}(\frac{1}{2}-\frac{1}{3\sqrt{3}})$

Solution

We aim to evaluate the integral:

01dt(t2+1)(t2+3)\int_{0}^{1} \frac{dt}{(t^2+1)(t^2+3)}

Step 1: Partial Fraction Decomposition

We decompose 1(t2+1)(t2+3)\frac{1}{(t^2 + 1)(t^2 + 3)} into partial fractions: 1(t2+1)(t2+3)=At2+1+Bt2+3\frac{1}{(t^2 + 1)(t^2 + 3)} = \frac{A}{t^2 + 1} + \frac{B}{t^2 + 3} Multiplying through by (t2+1)(t2+3)(t^2 + 1)(t^2 + 3), we get: 1=A(t2+3)+B(t2+1)1 = A(t^2 + 3) + B(t^2 + 1) Expanding: 1=At2+3A+Bt2+B1 = A t^2 + 3A + B t^2 + B 1=(A+B)t2+(3A+B)1 = (A + B)t^2 + (3A + B) Equating coefficients, we have:

  1. A+B=0A + B = 0
  2. 3A+B=13A + B = 1

From A+B=0A + B = 0, we find B=AB = -A. Substituting into the second equation: 3AA=1    2A=1    A=123A - A = 1 \implies 2A = 1 \implies A = \frac{1}{2} B=12B = -\frac{1}{2}

Thus, the decomposition is: 1(t2+1)(t2+3)=12t2+112t2+3\frac{1}{(t^2 + 1)(t^2 + 3)} = \frac{\frac{1}{2}}{t^2 + 1} - \frac{\frac{1}{2}}{t^2 + 3}

Step 2: Integral Splitting

The integral becomes: 01dt(t2+1)(t2+3)=1201dtt2+11201dtt2+3\int_{0}^{1} \frac{dt}{(t^2 + 1)(t^2 + 3)} = \frac{1}{2} \int_{0}^{1} \frac{dt}{t^2 + 1} - \frac{1}{2} \int_{0}^{1} \frac{dt}{t^2 + 3}

First Integral:

dtt2+1=arctan(t)\int \frac{dt}{t^2 + 1} = \arctan(t) Thus: 01dtt2+1=arctan(1)arctan(0)=π40=π4\int_{0}^{1} \frac{dt}{t^2 + 1} = \arctan(1) - \arctan(0) = \frac{\pi}{4} - 0 = \frac{\pi}{4}

Second Integral:

dtt2+3=13arctan(t3)\int \frac{dt}{t^2 + 3} = \frac{1}{\sqrt{3}} \arctan\left(\frac{t}{\sqrt{3}}\right) Thus: 01dtt2+3=13[arctan(13)arctan(0)]\int_{0}^{1} \frac{dt}{t^2 + 3} = \frac{1}{\sqrt{3}} \left[ \arctan\left(\frac{1}{\sqrt{3}}\right) - \arctan(0) \right] We know: arctan(13)=π6\arctan\left(\frac{1}{\sqrt{3}}\right) = \frac{\pi}{6} So: 01dtt2+3=13π6=π63\int_{0}^{1} \frac{dt}{t^2 + 3} = \frac{1}{\sqrt{3}} \cdot \frac{\pi}{6} = \frac{\pi}{6\sqrt{3}}

Step 3: Combine Results

Substitute back into the expression: 01dt(t2+1)(t2+3)=12π412π63\int_{0}^{1} \frac{dt}{(t^2 + 1)(t^2 + 3)} = \frac{1}{2} \cdot \frac{\pi}{4} - \frac{1}{2} \cdot \frac{\pi}{6\sqrt{3}} =π8π123= \frac{\pi}{8} - \frac{\pi}{12\sqrt{3}} Factoring out π8\frac{\pi}{8}: 01dt(t2+1)(t2+3)=π8(1233)\int_{0}^{1} \frac{dt}{(t^2 + 1)(t^2 + 3)} = \frac{\pi}{8} \left(1 - \frac{2}{3\sqrt{3}}\right)

Final Answer:

π8(136)(Option 3)\boxed{\frac{\pi}{8}\left(1 - \frac{\sqrt{3}}{6}\right)} \quad \text{(Option 3)}

Would you like further clarifications or detailed steps? Here are related questions:

  1. What are the properties of arctan(x)\arctan(x) used in integration?
  2. How do we approach partial fraction decomposition?
  3. Can we evaluate similar integrals over infinite limits?
  4. What happens if (t2+3)(t^2 + 3) changes to a more general (t2+a2)(t^2 + a^2)?
  5. How can numerical methods verify this result?

Tip: Always verify arctan\arctan values for specific arguments like 13\frac{1}{\sqrt{3}} or 3\sqrt{3} to avoid calculation errors.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Integration
Partial Fraction Decomposition
Trigonometric Substitution

Formulas

Partial fraction decomposition: $$\frac{1}{(t^2 + a^2)(t^2 + b^2)} = \frac{A}{t^2 + a^2} + \frac{B}{t^2 + b^2}$$
Definite integral: $$\int \frac{dt}{t^2 + a^2} = \frac{1}{a}\arctan\left(\frac{t}{a}\right) + C$$
Trigonometric identities for $$\arctan$$ values

Theorems

Fundamental Theorem of Calculus

Suitable Grade Level

Undergraduate Mathematics