Math Problem Statement
Find the curvature of r(t) =
sprt5 ti + et j + e−t k at point P(0, 1, 1).
Solution
We are tasked with finding the curvature of the vector-valued function at the point .
Step 1: Find corresponding to point
Given that: At , this means the -, -, and -components must match.
From the components:
- implies ,
- At , and , matching the point .
Thus, the curvature must be computed at .
Step 2: Compute and
First, we calculate the first derivative of :
= \sqrt{5} \, \hat{i} + e^t \, \hat{j} - e^{-t} \, \hat{k}$$ Next, we compute the second derivative: $$\mathbf{r}''(t) = \frac{d}{dt} \left( \sqrt{5} \, \hat{i} + e^t \, \hat{j} - e^{-t} \, \hat{k} \right) = 0 \, \hat{i} + e^t \, \hat{j} + e^{-t} \, \hat{k}$$ ### Step 3: Use the curvature formula The formula for curvature $$\kappa$$ is given by: $$\kappa = \frac{|\mathbf{r}'(t) \times \mathbf{r}''(t)|}{|\mathbf{r}'(t)|^3}$$ First, find the magnitude of $$\mathbf{r}'(t)$$ at $$t = 0$$: $$\mathbf{r}'(0) = \sqrt{5} \, \hat{i} + 1 \, \hat{j} - 1 \, \hat{k}$$ $$|\mathbf{r}'(0)| = \sqrt{(\sqrt{5})^2 + 1^2 + (-1)^2} = \sqrt{5 + 1 + 1} = \sqrt{7}$$ Next, compute the cross product $$\mathbf{r}'(0) \times \mathbf{r}''(0)$$: $$\mathbf{r}''(0) = 0 \, \hat{i} + 1 \, \hat{j} + 1 \, \hat{k}$$ $$\mathbf{r}'(0) \times \mathbf{r}''(0) = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ \sqrt{5} & 1 & -1 \\ 0 & 1 & 1 \end{vmatrix} = \hat{i} \begin{vmatrix} 1 & -1 \\ 1 & 1 \end{vmatrix} - \hat{j} \begin{vmatrix} \sqrt{5} & -1 \\ 0 & 1 \end{vmatrix} + \hat{k} \begin{vmatrix} \sqrt{5} & 1 \\ 0 & 1 \end{vmatrix}$$ $$= \hat{i} (1 \times 1 - (-1) \times 1) - \hat{j} (\sqrt{5} \times 1 - (-1) \times 0) + \hat{k} (\sqrt{5} \times 1 - 1 \times 0)$$ $$= \hat{i}(2) - \hat{j}(\sqrt{5}) + \hat{k}(\sqrt{5})$$ $$\mathbf{r}'(0) \times \mathbf{r}''(0) = 2 \, \hat{i} - \sqrt{5} \, \hat{j} + \sqrt{5} \, \hat{k}$$ The magnitude of the cross product is: $$|\mathbf{r}'(0) \times \mathbf{r}''(0)| = \sqrt{2^2 + (-\sqrt{5})^2 + (\sqrt{5})^2} = \sqrt{4 + 5 + 5} = \sqrt{14}$$ ### Step 4: Compute the curvature Now, using the curvature formula: $$\kappa = \frac{\sqrt{14}}{(\sqrt{7})^3} = \frac{\sqrt{14}}{7\sqrt{7}} = \frac{\sqrt{2}}{7}$$ Thus, the curvature at the point $$P(0, 1, 1)$$ is: $$\kappa = \frac{\sqrt{2}}{7}$$ Would you like further details or explanations? Here are some related questions: 1. How does curvature change along different curves? 2. What is the geometric meaning of curvature for a 3D curve? 3. Can curvature be used to describe motion in space? 4. How is torsion related to curvature? 5. What role does the Frenet-Serret frame play in curvature analysis? **Tip:** Curvature describes how sharply a curve bends at a given point. The smaller the radius of curvature, the greater the bending.Ask a new question for Free
By Image
Drop file here or Click Here to upload
Math Problem Analysis
Mathematical Concepts
Vector Calculus
Curvature
Parametric Equations
Formulas
Curvature formula: κ = |r'(t) × r''(t)| / |r'(t)|^3
Cross product
Magnitude of a vector
Theorems
Curvature of a vector-valued function
Cross product theorem
Suitable Grade Level
Undergraduate (Calculus II or III)
Related Recommendation
Compute Curvature of Parametric Curve r(t) = (e^t * sqrt(2), t * sqrt(2)) at t=0
Curvature of Vector Function r(t) = ⟨5t, t², t³⟩ at Point (5, 1, 1)
Find the Curvature of the Curve r(t) = ⟨3t, -3t^4, 5t^3⟩ at t = -2
Find the Curvature of the Vector Function r(t) = <9t, t^2, t^3> at the Point (9, 1, 1)
Curvature of the Parameterized Curve r(t) = ⟨5 cos t, √7 sin t, 2 cos t⟩ using Alternative Curvature Formula