Math Problem Statement

On considère un cube ABCDEFGH. Le point M est le milieu de [BF], N est défini par la relation CN = 1/2 GC, et P est le centre de la face ADHE. Justifier que la droite (MN) coupe le segment [BC] en son milieu I. Reproduire la figure et construire la section du cube par le plan (MNP). En Partie B, justifier que le vecteur n = (1, 2, 2) est normal au plan (MNP). Déterminer une représentation paramétrique de la droite passant par G et orthogonale au plan (MNP). Montrer que la droite (MN) coupe le plan (MNP) en un point K de coordonnées (2; -3; 3). Calculer la distance GK.

Solution

The image you uploaded presents a geometry problem related to a cube. Here's a summary of the problem:

  • You are asked to consider a cube ABCDEFGH.
  • Various points are defined in relation to the cube:
    • MM is the midpoint of [BF][BF]
    • LL is the midpoint of [BC][BC]
    • NN is defined by the relation CN=12GC\overrightarrow{CN} = \frac{1}{2} \overrightarrow{GC}
    • PP is the center of the face ADHEADHE.

The problem is split into two parts:

Partie A

  1. Justify that the line (MN)(MN) divides segment [BC][BC] in its midpoint II.
  2. Reproduce the figure and construct the section of the cube by the plane (MNP)(MNP).

Partie B

The space is defined with the orthonormal reference frame (A;AB,AD,AE)(A; \overrightarrow{AB}, \overrightarrow{AD}, \overrightarrow{AE}).

  1. Justify that the vector n=(122)\vec{n} = \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix} is a normal vector to the plane (MNP)(MNP). Then, deduce the Cartesian equation of the plane (MNP)(MNP).
  2. Determine a parametric representation of the line through GG and orthogonal to the plane (MNP)(MNP).
  3. Show that the line (MN)(MN) intersects the plane (MNP)(MNP) at point KK with coordinates (2;3;3)(2; -3; 3).
  4. Calculate the distance GKGK.
  5. Prove that the points MM, EE, DD, and TT are coplanar, and that the plane formed by them is orthogonal to the line MEDIMEDI.
  6. Calculate the volume of pyramid GMEDIGMEDI.

Would you like help solving a specific part of this problem or additional details on any step?

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Geometry
Vectors
Planes
Lines
Cube Properties

Formulas

Equation of a plane
Distance between points
Parametric form of a line

Theorems

Intersection of a line and a plane
Vector normal to a plane

Suitable Grade Level

Grades 10-12