Math Problem Statement

Tranformasi

Diketahui T1 = [4 -1], T2 = [-7 5], dan T3 = [-2 6]. Tentukan bayangan dari: (a) titik A(2, 5) oleh translasi T1, T2, T3 (b) titik B(-3, 4) oleh translasi T1, T2, T3

Solution

The question provides three transformations and asks for the transformed coordinates of points A(2,5)A(2, 5) and B(3,4)B(-3, 4) under these transformations:

  1. Transformations:

    • T1=[41]T_1 = \begin{bmatrix} 4 \\ -1 \end{bmatrix}
    • T2=[75]T_2 = \begin{bmatrix} -7 \\ 5 \end{bmatrix}
    • T3=[26]T_3 = \begin{bmatrix} -2 \\ 6 \end{bmatrix}
  2. Steps to Solve:

    • For each point, add the transformation vector to the original coordinates to get the new coordinates after each transformation.

Let's calculate the results:

(a) Point A(2,5)A(2, 5)

  1. Transformation T1T_1: A=[25]+[41]=[64]A' = \begin{bmatrix} 2 \\ 5 \end{bmatrix} + \begin{bmatrix} 4 \\ -1 \end{bmatrix} = \begin{bmatrix} 6 \\ 4 \end{bmatrix}

  2. Transformation T2T_2: A=[25]+[75]=[510]A'' = \begin{bmatrix} 2 \\ 5 \end{bmatrix} + \begin{bmatrix} -7 \\ 5 \end{bmatrix} = \begin{bmatrix} -5 \\ 10 \end{bmatrix}

  3. Transformation T3T_3: A=[25]+[26]=[011]A''' = \begin{bmatrix} 2 \\ 5 \end{bmatrix} + \begin{bmatrix} -2 \\ 6 \end{bmatrix} = \begin{bmatrix} 0 \\ 11 \end{bmatrix}

(b) Point B(3,4)B(-3, 4)

  1. Transformation T1T_1: B=[34]+[41]=[13]B' = \begin{bmatrix} -3 \\ 4 \end{bmatrix} + \begin{bmatrix} 4 \\ -1 \end{bmatrix} = \begin{bmatrix} 1 \\ 3 \end{bmatrix}

  2. Transformation T2T_2: B=[34]+[75]=[109]B'' = \begin{bmatrix} -3 \\ 4 \end{bmatrix} + \begin{bmatrix} -7 \\ 5 \end{bmatrix} = \begin{bmatrix} -10 \\ 9 \end{bmatrix}

  3. Transformation T3T_3: B=[34]+[26]=[510]B''' = \begin{bmatrix} -3 \\ 4 \end{bmatrix} + \begin{bmatrix} -2 \\ 6 \end{bmatrix} = \begin{bmatrix} -5 \\ 10 \end{bmatrix}

Summary of Results

  • For A(2,5)A(2, 5):

    • After T1T_1: (6,4)(6, 4)
    • After T2T_2: (5,10)(-5, 10)
    • After T3T_3: (0,11)(0, 11)
  • For B(3,4)B(-3, 4):

    • After T1T_1: (1,3)(1, 3)
    • After T2T_2: (10,9)(-10, 9)
    • After T3T_3: (5,10)(-5, 10)

Would you like additional details on how each transformation affects the points?

Here are 5 follow-up questions:

  1. How would the transformations change if the points were located in a three-dimensional space?
  2. What is the effect of combining multiple transformations on a single point?
  3. How can matrix multiplication be used to represent these transformations?
  4. How does applying transformations affect the geometric shape of a figure in coordinate space?
  5. What would be the inverse transformations to return the points to their original positions?

Tip: In transformations, always check whether they are translations, rotations, or scalings, as this influences the result significantly.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Translation Transformation
Coordinate Geometry

Formulas

(x', y') = (x + a, y + b)

Theorems

Translation theorem in coordinate transformations

Suitable Grade Level

Grades 10-12