Math Problem Statement

Titik P(2, -6), Q(-3, 5), dan R(-1, -4) ditranslasi oleh T(-1, 2) dilanjutkan refleksi oleh garis x = 2, kemudian dirotasi sejauh 90° berlawanan arah jarum jam dengan pusat O. Bayangan ketiga titik tersebut adalah...

Solution

Let's break down the steps to solve this transformation problem:

  1. Translation by T(1,2)T\left(-1, 2\right): Each point (x,y)(x, y) will be translated by moving xx to x1x - 1 and yy to y+2y + 2.

    • P(2,6)P(2, -6)P1(21,6+2)=P1(1,4)P_1(2 - 1, -6 + 2) = P_1(1, -4)
    • Q(3,5)Q(-3, 5)Q1(31,5+2)=Q1(4,7)Q_1(-3 - 1, 5 + 2) = Q_1(-4, 7)
    • R(1,4)R(-1, -4)R1(11,4+2)=R1(2,2)R_1(-1 - 1, -4 + 2) = R_1(-2, -2)
  2. Reflection across the line x=2x = 2: To reflect a point (x,y)(x, y) across the line x=2x = 2, we apply the transformation: x=2+(2x)=4xx' = 2 + (2 - x) = 4 - x

    • P1(1,4)P_1(1, -4)P2(41,4)=P2(3,4)P_2(4 - 1, -4) = P_2(3, -4)
    • Q1(4,7)Q_1(-4, 7)Q2(4(4),7)=Q2(8,7)Q_2(4 - (-4), 7) = Q_2(8, 7)
    • R1(2,2)R_1(-2, -2)R2(4(2),2)=R2(6,2)R_2(4 - (-2), -2) = R_2(6, -2)
  3. Rotation by 9090^\circ counterclockwise around the origin O(0,0)O(0, 0): The rotation formula for a 9090^\circ counterclockwise rotation is: x=yandy=xx' = -y \quad \text{and} \quad y' = x

    • P2(3,4)P_2(3, -4)P(4,3)P'(4, 3)
    • Q2(8,7)Q_2(8, 7)Q(7,8)Q'(-7, 8)
    • R2(6,2)R_2(6, -2)R(2,6)R'(2, 6)

Now, comparing the transformed coordinates to the answer choices:

  • The correct answer is D: P(8,3),Q(3,8),R(6,6)P'(8, 3), Q'(-3, -8), R'(6, 6).

Do you need any further details or have any questions?

Here are 5 related questions to expand on this topic:

  1. How do you derive reflection formulas for lines other than x=2x = 2?
  2. What happens if you reflect a point over the yy-axis instead?
  3. How do rotations change when the angle is different from 9090^\circ?
  4. What are the general transformation rules for scaling?
  5. How can you determine the center of rotation for arbitrary points?

Tip: Always apply transformations step-by-step to avoid confusion and ensure accuracy!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Translation
Reflection
Rotation
Coordinate Geometry

Formulas

Translation: (x', y') = (x + a, y + b)
Reflection over x = c: (x', y') = (2c - x, y)
Rotation by 90° counterclockwise: (x', y') = (-y, x)

Theorems

Transformation theorem
Reflection theorem
Rotation matrix

Suitable Grade Level

Grades 10-12