Math Problem Statement

Convert the following recurring decimals to fractions: 53. 0.6̅, 54. 0.4, 55. 0.1̅2̅, 56. 0.4̅3̅, 57. 0.1̅34̅, 58. 0.7̅31̅, 59. 0.25, 60. 0.6̅17̅.

Solution

The image contains the following recurring decimals to be converted into fractions:

    1. 0.60.\overline{6}
    1. 0.40.4
    1. 0.120.\overline{12}
    1. 0.430.\overline{43}
    1. 0.1340.1\overline{34}
    1. 0.7310.\overline{731}
    1. 0.250.25
    1. 0.6170.6\overline{17}

Let's start by converting these recurring decimals to fractions:

1. 0.60.\overline{6} (53)

Let x=0.6x = 0.\overline{6}. Multiply by 10: 10x=6.610x = 6.\overline{6} Now subtract x=0.6x = 0.\overline{6}: 10xx=6.60.610x - x = 6.\overline{6} - 0.\overline{6} 9x=69x = 6 x=69=23x = \frac{6}{9} = \frac{2}{3}

2. 0.40.4 (54)

This is a terminating decimal, so: 0.4=410=250.4 = \frac{4}{10} = \frac{2}{5}

3. 0.120.\overline{12} (55)

Let x=0.12x = 0.\overline{12}. Multiply by 100: 100x=12.12100x = 12.\overline{12} Now subtract x=0.12x = 0.\overline{12}: 100xx=12.120.12100x - x = 12.\overline{12} - 0.\overline{12} 99x=1299x = 12 x=1299=433x = \frac{12}{99} = \frac{4}{33}

4. 0.430.\overline{43} (56)

Let x=0.43x = 0.\overline{43}. Multiply by 100: 100x=43.43100x = 43.\overline{43} Now subtract x=0.43x = 0.\overline{43}: 100xx=43.430.43100x - x = 43.\overline{43} - 0.\overline{43} 99x=4399x = 43 x=4399x = \frac{43}{99}

5. 0.1340.1\overline{34} (57)

Let x=0.134x = 0.1\overline{34}. First express as: x=0.1+0.34x = 0.1 + 0.\overline{34} 0.340.\overline{34} can be converted using the method above, where x=3499x = \frac{34}{99}: x=0.1+3499x = 0.1 + \frac{34}{99} Convert 0.1 to a fraction: x=110+3499x = \frac{1}{10} + \frac{34}{99} Find a common denominator: x=99+340990=439990x = \frac{99 + 340}{990} = \frac{439}{990} Simplify: x=439990x = \frac{439}{990}

6. 0.7310.\overline{731} (58)

Let x=0.731x = 0.\overline{731}. Multiply by 1000: 1000x=731.7311000x = 731.\overline{731} Now subtract x=0.731x = 0.\overline{731}: 1000xx=731.7310.7311000x - x = 731.\overline{731} - 0.\overline{731} 999x=731999x = 731 x=731999x = \frac{731}{999}

7. 0.250.25 (59)

This is a terminating decimal, so: 0.25=25100=140.25 = \frac{25}{100} = \frac{1}{4}

8. 0.6170.6\overline{17} (60)

Let x=0.617x = 0.6\overline{17}. First express as: x=0.6+0.17x = 0.6 + 0.\overline{17} 0.170.\overline{17} can be converted similarly: 0.17=17990.\overline{17} = \frac{17}{99} Convert 0.6 to a fraction: x=610+1799x = \frac{6}{10} + \frac{17}{99} Find a common denominator: x=594+170990=764990x = \frac{594 + 170}{990} = \frac{764}{990} Simplify: x=382495x = \frac{382}{495}

Would you like more details on any of these conversions, or have any other questions?


Here are 5 related questions to consider:

  1. How do you convert any recurring decimal into a fraction?
  2. What is the difference between terminating and recurring decimals?
  3. How do you simplify fractions to their lowest terms?
  4. What are the properties of repeating decimal patterns?
  5. Can every repeating decimal be expressed as a fraction?

Tip: Always simplify fractions after converting from decimals to ensure the result is in its simplest form.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Recurring Decimals
Fractions
Simplification

Formulas

To convert a recurring decimal into a fraction: x = recurring decimal, Multiply by power of 10 to shift decimal places, Subtract and solve for x
Simplifying fractions: Divide numerator and denominator by greatest common divisor

Theorems

Concept of recurring decimals
Simplification of fractions

Suitable Grade Level

Grades 7-10