Math Problem Statement

Convert the following: (i) (562.13)7 = (?)10 (ii) (467.342)10 =(?)5 (iii (AE29.11)16 = (?)8

Solution

Let's convert each of the given numbers to the desired base step by step.

(i) (562.13)7=(?)10(562.13)_7 = (?)_{10}

To convert a number from base 7 to base 10, we need to expand it in powers of 7.

(562.13)7=5×72+6×71+2×70+1×71+3×72(562.13)_7 = 5 \times 7^2 + 6 \times 7^1 + 2 \times 7^0 + 1 \times 7^{-1} + 3 \times 7^{-2}

Now calculate each term: 5×49=2455 \times 49 = 245 6×7=426 \times 7 = 42 2×1=22 \times 1 = 2 1×170.1428571 \times \frac{1}{7} \approx 0.142857 3×1490.0612243 \times \frac{1}{49} \approx 0.061224

Adding them up: 245+42+2+0.142857+0.061224289.204081245 + 42 + 2 + 0.142857 + 0.061224 \approx 289.204081

So, (562.13)7=(289.204081)10(562.13)_7 = (289.204081)_{10}

(ii) (467.342)10=(?)5(467.342)_{10} = (?)_5

To convert a decimal number from base 10 to base 5, we need to convert both the integer and the fractional parts separately.

  1. Integer part 46710467_{10}:

    • Divide 467 by 5, quotient = 93, remainder = 2
    • Divide 93 by 5, quotient = 18, remainder = 3
    • Divide 18 by 5, quotient = 3, remainder = 3
    • Divide 3 by 5, quotient = 0, remainder = 3

    So, 46710=(3332)5467_{10} = (3332)_5.

  2. Fractional part 0.342100.342_{10}:

    • Multiply 0.342 by 5, result = 1.71, integer part = 1
    • Multiply 0.71 by 5, result = 3.55, integer part = 3
    • Multiply 0.55 by 5, result = 2.75, integer part = 2
    • Multiply 0.75 by 5, result = 3.75, integer part = 3 (This can continue, but we'll stop here for precision.)

    So, 0.34210(0.1323)50.342_{10} \approx (0.1323)_5.

Combining both parts: (467.342)10(3332.1323)5(467.342)_{10} \approx (3332.1323)_5

(iii) (AE29.11)16=(?)8(AE29.11)_{16} = (?)_8

To convert from base 16 to base 8, we can first convert the hexadecimal number to binary, and then from binary to octal.

  1. Convert to binary:

    • A16=10102A_{16} = 1010_2
    • E16=11102E_{16} = 1110_2
    • 216=001022_{16} = 0010_2
    • 916=100129_{16} = 1001_2
    • 116=000121_{16} = 0001_2

    So, (AE29.11)16=(1010 1110 0010 1001.0001 0001)2(AE29.11)_{16} = (1010\ 1110\ 0010\ 1001.0001\ 0001)_2

  2. Convert to octal (group binary digits in sets of 3):

    • Group the binary digits from right to left: 101 011 100 010 100.001 000 100101\ 011\ 100\ 010\ 100.001\ 000\ 100

    • Convert each group to octal: 1012=58, 0112=38, 1002=48, 0102=28, 1002=48101_2 = 5_8, \ 011_2 = 3_8, \ 100_2 = 4_8, \ 010_2 = 2_8, \ 100_2 = 4_8 0012=18, 0002=08, 1002=48001_2 = 1_8, \ 000_2 = 0_8, \ 100_2 = 4_8

    So, (AE29.11)16=(53424.104)8(AE29.11)_{16} = (53424.104)_8

Final Answers:

  1. (562.13)7(289.204081)10(562.13)_7 \approx (289.204081)_{10}
  2. (467.342)10(3332.1323)5(467.342)_{10} \approx (3332.1323)_5
  3. (AE29.11)16=(53424.104)8(AE29.11)_{16} = (53424.104)_8

Would you like more details or have any questions?


Here are 5 related questions for further practice:

  1. Convert (102.4)8(102.4)_8 to base 10.
  2. Convert (1100101)2(1100101)_2 to base 10.
  3. Convert (453.21)6(453.21)_6 to base 7.
  4. Convert (9345.67)10(9345.67)_{10} to base 2.
  5. Convert (ABC.123)16(ABC.123)_{16} to base 10.

Tip: When converting between bases, converting through base 2 (binary) can often simplify the process, especially for bases that are powers of 2, like base 4, 8, or 16.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Number Bases
Conversion between Bases

Formulas

-

Theorems

-

Suitable Grade Level

High School