Math Problem Statement

1Convert 11001 1 2 110011 2 ​ to decimal: 1 ∗ 2 5 + 1 ∗ 2 4 + 0 ∗ 2 3 + 0 ∗ 2 2 + 1 ∗ 2 1 + 1 ∗ 2 0

51 1∗2 5 +1∗2 4 +0∗2 3 +0∗2 2 +1∗2 1 +1∗2 0 =51 2Convert 11001 1 2 110011 2 ​ to octal: 11001 1 2

6 3 8 110011 2 ​ =63 8 ​

3Convert 34 5 10 345 10 ​ to binary: 34 5 10

10101100 1 2 345 10 ​ =101011001 2 ​

4Convert 34 5 10 345 10 ​ to hexadecimal: 34 5 10

15 9 16 345 10 ​ =159 16 ​

5Convert 76 7 8 767 8 ​ to decimal: 7 ∗ 8 2 + 6 ∗ 8 1 + 7 ∗ 8 0

511 7∗8 2 +6∗8 1 +7∗8 0 =511 6Convert 76 7 8 767 8 ​ to binary: 76 7 8

10000011 1 2 767 8 ​ =100000111 2 ​

7Convert 987 7 16 9877 16 ​ to decimal: 9 ∗ 1 6 3 + 8 ∗ 1 6 2 + 7 ∗ 1 6 1 + 7 ∗ 1 6 0

38935 9∗16 3 +8∗16 2 +7∗16 1 +7∗16 0 =38935 8Convert 987 7 16 9877 16 ​ to octal: 987 7 16

11044 7 8 9877 16 ​ =110447 8 ​

Solution

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Number Base Conversion
Binary System
Octal System
Decimal System
Hexadecimal System

Formulas

Binary to Decimal: Sum of (binary digit × 2^position)
Decimal to Binary: Repeated division by 2, reading remainders
Decimal to Hexadecimal: Repeated division by 16, reading remainders
Octal to Decimal: Sum of (octal digit × 8^position)
Hexadecimal to Decimal: Sum of (hex digit × 16^position)

Theorems

-

Suitable Grade Level

Grades 9-12