Math Problem Statement
1Convert 11001 1 2 110011 2 to decimal: 1 ∗ 2 5 + 1 ∗ 2 4 + 0 ∗ 2 3 + 0 ∗ 2 2 + 1 ∗ 2 1 + 1 ∗ 2 0
51 1∗2 5 +1∗2 4 +0∗2 3 +0∗2 2 +1∗2 1 +1∗2 0 =51 2Convert 11001 1 2 110011 2 to octal: 11001 1 2
6 3 8 110011 2 =63 8
3Convert 34 5 10 345 10 to binary: 34 5 10
10101100 1 2 345 10 =101011001 2
4Convert 34 5 10 345 10 to hexadecimal: 34 5 10
15 9 16 345 10 =159 16
5Convert 76 7 8 767 8 to decimal: 7 ∗ 8 2 + 6 ∗ 8 1 + 7 ∗ 8 0
511 7∗8 2 +6∗8 1 +7∗8 0 =511 6Convert 76 7 8 767 8 to binary: 76 7 8
10000011 1 2 767 8 =100000111 2
7Convert 987 7 16 9877 16 to decimal: 9 ∗ 1 6 3 + 8 ∗ 1 6 2 + 7 ∗ 1 6 1 + 7 ∗ 1 6 0
38935 9∗16 3 +8∗16 2 +7∗16 1 +7∗16 0 =38935 8Convert 987 7 16 9877 16 to octal: 987 7 16
11044 7 8 9877 16 =110447 8
Solution
Ask a new question for Free
By Image
Drop file here or Click Here to upload
Math Problem Analysis
Mathematical Concepts
Number Base Conversion
Binary System
Octal System
Decimal System
Hexadecimal System
Formulas
Binary to Decimal: Sum of (binary digit × 2^position)
Decimal to Binary: Repeated division by 2, reading remainders
Decimal to Hexadecimal: Repeated division by 16, reading remainders
Octal to Decimal: Sum of (octal digit × 8^position)
Hexadecimal to Decimal: Sum of (hex digit × 16^position)
Theorems
-
Suitable Grade Level
Grades 9-12
Related Recommendation
Binary Number Conversion: From Binary to Decimal, Octal, and Hexadecimal
Step-by-Step Conversion Exercises: Decimal, Binary, Octal, and Hexadecimal
Converting Between Decimal, Binary, Octal, and Hexadecimal Number Systems
Number System Conversion: Octal, Hexadecimal, and Binary to Decimal
Convert Decimal Numbers to Binary, Octal, and Hexadecimal