Math Problem Statement

Write the complex number in polar form with argument 𝜃 between 0 and 2𝜋. −7

2 − 7

2 i

Solution

To write the complex number 7272i-\frac{7}{2} - \frac{7}{2}i in polar form, we need to determine its magnitude rr and argument θ\theta.

Step 1: Calculate the Magnitude

The magnitude rr of a complex number a+bia + bi is given by: r=a2+b2r = \sqrt{a^2 + b^2} For the complex number 7272i-\frac{7}{2} - \frac{7}{2}i:

a=72,b=72a = -\frac{7}{2}, \quad b = -\frac{7}{2}

r=(72)2+(72)2r = \sqrt{\left(-\frac{7}{2}\right)^2 + \left(-\frac{7}{2}\right)^2}

r=(494)+(494)r = \sqrt{\left(\frac{49}{4}\right) + \left(\frac{49}{4}\right)}

r=984r = \sqrt{\frac{98}{4}}

r=24.5r = \sqrt{24.5}

r=72r = \frac{7}{\sqrt{2}}

r=722r = \frac{7\sqrt{2}}{2}

Step 2: Calculate the Argument

The argument θ\theta of a complex number a+bia + bi is given by: θ=tan1(ba)\theta = \tan^{-1}\left(\frac{b}{a}\right)

Since both aa and bb are negative, the complex number lies in the third quadrant. For 7272i-\frac{7}{2} - \frac{7}{2}i:

θ=tan1(7272)\theta = \tan^{-1}\left(\frac{-\frac{7}{2}}{-\frac{7}{2}}\right)

θ=tan1(1)\theta = \tan^{-1}(1)

θ=3π4 (since it’s in the third quadrant)\theta = \frac{3\pi}{4} \text{ (since it's in the third quadrant)}

Step 3: Adjust for the Third Quadrant

In the third quadrant, the argument is:

θ=π+π4=5π4\theta = \pi + \frac{\pi}{4} = \frac{5\pi}{4}

Conclusion: Polar Form

Thus, the polar form of the complex number 7272i-\frac{7}{2} - \frac{7}{2}i is: 722(cos(5π4)+isin(5π4))\frac{7\sqrt{2}}{2} \left(\cos\left(\frac{5\pi}{4}\right) + i\sin\left(\frac{5\pi}{4}\right)\right)

Summary

The polar form is: 722cis(5π4)\boxed{\frac{7\sqrt{2}}{2} \text{cis} \left( \frac{5\pi}{4} \right)}

Do you want more details or have any questions?

Relative Questions:

  1. How do you convert polar coordinates back to rectangular form?
  2. What is the significance of the argument in the polar form of a complex number?
  3. How can you determine the quadrant of a complex number?
  4. What is Euler's formula and how does it relate to polar form?
  5. Can you explain how to add two complex numbers in polar form?

Tip:

When working with complex numbers in polar form, always make sure to identify the correct quadrant for the argument to avoid mistakes in determining the angle.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Complex Numbers
Polar Coordinates
Trigonometry

Formulas

Magnitude formula: r = √(a^2 + b^2)
Argument formula: θ = tan^(-1)(b/a)

Theorems

Polar Form of a Complex Number

Suitable Grade Level

Grades 11-12