Math Problem Statement

(-3+2i)^5

Solution

We need to compute:

(3+2i)5(-3 + 2i)^5

Step 1: Convert to Polar Form

A complex number a+bia + bi can be expressed in polar form as:

reiθr e^{i\theta}

where:

  • r=a+bi=a2+b2r = |a + bi| = \sqrt{a^2 + b^2}
  • θ=arg(a+bi)=tan1(ba)\theta = \arg(a + bi) = \tan^{-1} \left(\frac{b}{a} \right)

For 3+2i-3 + 2i:

r=(3)2+(2)2=9+4=13r = \sqrt{(-3)^2 + (2)^2} = \sqrt{9 + 4} = \sqrt{13}

The argument θ\theta is:

θ=tan1(23)\theta = \tan^{-1} \left(\frac{2}{-3} \right)

Since 3+2i-3 + 2i is in the second quadrant, we adjust θ\theta:

θ=π+tan1(23)\theta = \pi + \tan^{-1} \left(\frac{2}{-3} \right)

Approximating:

tan1(2/3)0.588\tan^{-1}(-2/3) \approx -0.588

θπ0.5882.553 radians\theta \approx \pi - 0.588 \approx 2.553 \text{ radians}

Thus, the polar form is:

13ei2.553\sqrt{13} e^{i 2.553}

Step 2: Use De Moivre’s Theorem

De Moivre’s Theorem states:

(reiθ)n=rneinθ(r e^{i\theta})^n = r^n e^{i n\theta}

Applying n=5n = 5:

(13ei2.553)5=(13)5ei(5×2.553)(\sqrt{13} e^{i 2.553})^5 = (\sqrt{13})^5 e^{i (5 \times 2.553)}

Computing powers:

(13)5=135/2=132.5=132130.5=16913(\sqrt{13})^5 = 13^{5/2} = 13^{2.5} = 13^2 \cdot 13^{0.5} = 169 \sqrt{13}

Computing angle:

5×2.553=12.7655 \times 2.553 = 12.765

Since 12.76512.765 radians is more than 2π2\pi, we reduce it:

12.7652(3.1416)=12.7656.2832=6.481812.765 - 2(3.1416) = 12.765 - 6.2832 = 6.4818

6.48182(3.1416)=6.48186.2832=0.1986 radians6.4818 - 2(3.1416) = 6.4818 - 6.2832 = 0.1986 \text{ radians}

Step 3: Convert Back to Rectangular Form

ei0.1986=cos(0.1986)+isin(0.1986)e^{i 0.1986} = \cos(0.1986) + i \sin(0.1986)

Approximating:

cos(0.1986)0.980\cos(0.1986) \approx 0.980 sin(0.1986)0.198\sin(0.1986) \approx 0.198

Multiplying by 16913169 \sqrt{13}:

Real part=16913×0.980169×3.605×0.980\text{Real part} = 169 \sqrt{13} \times 0.980 \approx 169 \times 3.605 \times 0.980

597.3\approx 597.3

Imaginary part=16913×0.198169×3.605×0.198\text{Imaginary part} = 169 \sqrt{13} \times 0.198 \approx 169 \times 3.605 \times 0.198

120.7i\approx 120.7 i

Final Answer:

(3+2i)5597.3+120.7i(-3+2i)^5 \approx 597.3 + 120.7 i

Would you like a breakdown of any step?

Related Questions:

  1. How do you convert a complex number to polar form?
  2. What is De Moivre’s Theorem, and why is it useful?
  3. How do you simplify large exponentiations of complex numbers?
  4. What are the applications of complex numbers in engineering?
  5. How do you find the principal argument of a complex number?

Tip:

Always check which quadrant your complex number is in when calculating the argument θ\theta.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Complex Numbers
Polar Form
Exponentiation of Complex Numbers

Formulas

Polar Form: r e^{i\theta}, where r = \sqrt{a^2 + b^2}, \theta = \tan^{-1}(b/a)
De Moivre’s Theorem: (r e^{i\theta})^n = r^n e^{i n\theta}
Euler’s Formula: e^{i\theta} = \cos(\theta) + i \sin(\theta)

Theorems

De Moivre’s Theorem
Euler’s Formula

Suitable Grade Level

College Level (Advanced High School)