Math Problem Statement

Question 1 Convert the binary number 1111111010.1001 to decimal

Solution

To convert the binary number 1111111010.100121111111010.1001_2 to decimal:

Step 1: Convert the integer part 111111101021111111010_2 to decimal

Each binary digit represents a power of 2:

(1×29)+(1×28)+(1×27)+(1×26)+(1×25)+(1×24)+(1×23)+(0×22)+(1×21)+(0×20)(1 \times 2^9) + (1 \times 2^8) + (1 \times 2^7) + (1 \times 2^6) + (1 \times 2^5) + (1 \times 2^4) + (1 \times 2^3) + (0 \times 2^2) + (1 \times 2^1) + (0 \times 2^0)

=512+256+128+64+32+16+8+0+2+0=1018= 512 + 256 + 128 + 64 + 32 + 16 + 8 + 0 + 2 + 0 = 1018

Step 2: Convert the fractional part .10012.1001_2 to decimal

Each digit represents a negative power of 2:

(1×21)+(0×22)+(0×23)+(1×24)(1 \times 2^{-1}) + (0 \times 2^{-2}) + (0 \times 2^{-3}) + (1 \times 2^{-4})

=0.5+0+0+0.0625=0.5625= 0.5 + 0 + 0 + 0.0625 = 0.5625

Step 3: Combine integer and fractional parts

1018+0.5625=1018.56251018 + 0.5625 = 1018.5625

Final Answer:

1018.562510\mathbf{1018.5625_{10}}

Would you like a step-by-step breakdown of any part?

Related Questions:

  1. Convert 110101.0112110101.011_2 to decimal.
  2. Convert 111.10112111.1011_2 to decimal.
  3. Convert 1001101.110121001101.1101_2 to decimal.
  4. Convert 10101010.1010210101010.1010_2 to decimal.
  5. Convert 1111111111.111121111111111.1111_2 to decimal.

Tip:

When converting binary fractions to decimal, each digit after the point represents decreasing powers of 2 (e.g., 21,22,232^{-1}, 2^{-2}, 2^{-3}, etc.).

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Binary to Decimal Conversion
Fractions
Exponents

Formulas

Binary to Decimal Conversion Formula
Sum of Powers of 2 (Integer part)
Sum of Negative Powers of 2 (Fractional part)

Theorems

Binary Number System
Exponentiation of 2

Suitable Grade Level

Grades 6-8