Math Problem Statement

convert 11110011110100.000v2 into a decimal number

Solution

To convert the binary number 11110011110100.000211110011110100.000_2 into a decimal number, we’ll break it down as follows:

  1. Separate the Integer and Fractional Parts
    The binary number is 11110011110100.000211110011110100.000_2, which can be divided into:

    • Integer part: 11110011110100211110011110100_2
    • Fractional part: 0002000_2
  2. Convert the Integer Part
    We convert 11110011110100211110011110100_2 by expanding it as: 1213+1212+1211+1210+029+028+127+126+125+024+123+022+021+0201 \cdot 2^{13} + 1 \cdot 2^{12} + 1 \cdot 2^{11} + 1 \cdot 2^{10} + 0 \cdot 2^9 + 0 \cdot 2^8 + 1 \cdot 2^7 + 1 \cdot 2^6 + 1 \cdot 2^5 + 0 \cdot 2^4 + 1 \cdot 2^3 + 0 \cdot 2^2 + 0 \cdot 2^1 + 0 \cdot 2^0 Calculating each term: =8192+4096+2048+1024+0+0+128+64+32+0+8+0+4+0=17556= 8192 + 4096 + 2048 + 1024 + 0 + 0 + 128 + 64 + 32 + 0 + 8 + 0 + 4 + 0 = 17556

  3. Convert the Fractional Part
    The fractional part 0002000_2 simply represents 0 in decimal.

  4. Combine the Integer and Fractional Parts
    Therefore, the decimal value is: 17556.017556.0

Final Answer

11110011110100.0002=175561011110011110100.000_2 = 17556_{10}

Would you like details on the calculation steps? Here are some further questions to explore:

  1. How is binary-to-decimal conversion performed for numbers with non-zero fractional parts?

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Binary to Decimal Conversion
Number Systems
Integer and Fractional Parts

Formulas

Binary to Decimal Conversion Formula: For a binary number with integer part I and fractional part F, Decimal = (I)_10 + (F)_10

Theorems

-

Suitable Grade Level

Grades 9-12