Math Problem Statement

Исследовать ряд на сходимость, применяя признак Коши: (a) \( \sum_{n=1}^\infty \left( \frac{n-1}{2n+1} \right)^n \); (b) \( \sum_{n=1}^\infty \left( \frac{n-1}{n+1} \right)^{n(n-1)} \).

Solution

The task involves determining the convergence of two infinite series using the Cauchy root test (ann\sqrt[n]{a_n}-criterion).

The two series are:

  1. n=1(n12n+1)n\sum_{n=1}^\infty \left( \frac{n-1}{2n+1} \right)^n
  2. n=1(n1n+1)n(n1)\sum_{n=1}^\infty \left( \frac{n-1}{n+1} \right)^{n(n-1)}

Let's solve each part step by step.


a) Series n=1(n12n+1)n\sum_{n=1}^\infty \left( \frac{n-1}{2n+1} \right)^n:

Using the Cauchy root test:

L=lim supnann,L = \limsup_{n \to \infty} \sqrt[n]{a_n}, where an=(n12n+1)na_n = \left( \frac{n-1}{2n+1} \right)^n.

We compute: ann=n12n+1.\sqrt[n]{a_n} = \frac{n-1}{2n+1}.

Now, take the limit as nn \to \infty: limnn12n+1=limnn(11n)2n(1+12n)=12.\lim_{n \to \infty} \frac{n-1}{2n+1} = \lim_{n \to \infty} \frac{n(1 - \frac{1}{n})}{2n(1 + \frac{1}{2n})} = \frac{1}{2}.

Thus: L=12.L = \frac{1}{2}.

Since L<1L < 1, the series converges by the Cauchy root test.


b) Series n=1(n1n+1)n(n1)\sum_{n=1}^\infty \left( \frac{n-1}{n+1} \right)^{n(n-1)}:

Using the Cauchy root test again:

Let an=(n1n+1)n(n1)a_n = \left( \frac{n-1}{n+1} \right)^{n(n-1)}. We compute: ann=(n1n+1)n1.\sqrt[n]{a_n} = \left( \frac{n-1}{n+1} \right)^{n-1}.

Now take the logarithm to simplify the asymptotics: ln(ann)=(n1)ln(n1n+1).\ln \left( \sqrt[n]{a_n} \right) = (n-1) \ln \left( \frac{n-1}{n+1} \right).

As nn \to \infty, expand ln(n1n+1)\ln \left( \frac{n-1}{n+1} \right) using a Taylor series: ln(n1n+1)=ln(12n+1)2n+1.\ln \left( \frac{n-1}{n+1} \right) = \ln \left( 1 - \frac{2}{n+1} \right) \sim -\frac{2}{n+1}.

So: ln(ann)(n1)(2n+1)=2(n1)n+1.\ln \left( \sqrt[n]{a_n} \right) \sim (n-1) \cdot \left( -\frac{2}{n+1} \right) = -\frac{2(n-1)}{n+1}.

As nn \to \infty: [ \ln \left( \sqrt[n]{a_n} \right) \to -2, \quad \text{so } \sqrt[n]{a_n} \to e^{-2}. ]

Thus: L=e2.L = e^{-2}.

Since L<1L < 1, the series converges by the Cauchy root test.


Summary of Results:

  1. Series (a) converges.
  2. Series (b) converges.

Would you like me to elaborate on any step or explain the reasoning further?


Follow-up Questions:

  1. What is the difference between the Cauchy root test and other convergence tests (e.g., ratio test)?
  2. Can you apply the Cauchy root test to a non-positive series?
  3. How would the result change if L=1L = 1 in the Cauchy root test?
  4. What are the implications of the Taylor expansion approximation used here?
  5. How does the growth of nnn^n compare to exponential terms like ene^n in these tests?

Tip:

When using the Cauchy root test, always check if the limit LL is strictly less than 1 for guaranteed convergence. If L=1L = 1, the test is inconclusive.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Infinite Series
Cauchy Root Test
Limits
Logarithmic Asymptotics

Formulas

Cauchy Root Test: L = limsup (n→∞) \sqrt[n]{a_n}
Logarithmic Expansion: \ln(1+x) ≈ x for small x

Theorems

Cauchy Root Test

Suitable Grade Level

Undergraduate Mathematics