Math Problem Statement

soit la fonction g(x) = (x2+x+2 2)x1\frac{\left(\sqrt{x^2+x+2\text{ }}-2\right)}{x-1} si x1 et g(1) =3\ne1\text{ et }g\left(1\right)\text{ }=\,3 ; montrer que la fonction g n'est pas continue sur en x0= 1x_0=\text{ }1

Solution

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Continuity of functions
Limits
Rationalization
Indeterminate forms

Formulas

g(x) = \frac{\left(\sqrt{x^2 + x + 2} - 2\right)}{x - 1}
Limit \lim_{x \to 1} \frac{\sqrt{x^2 + x + 2} - 2}{x - 1}
Factorization and rationalization techniques

Theorems

Definition of continuity at a point
L'Hopital's rule (optional for indeterminate forms)

Suitable Grade Level

Grades 11-12 or Early University Level