Math Problem Statement

Compute 5u + 2v - 2w where u = [3, 4, 5], v = [4, 8, 1], w = [5, 5, 9].

Solution

We are tasked with computing 5u+2v2w5\mathbf{u} + 2\mathbf{v} - 2\mathbf{w}, where:

u=[345],v=[481],w=[559]\mathbf{u} = \begin{bmatrix} 3 \\ 4 \\ 5 \end{bmatrix}, \quad \mathbf{v} = \begin{bmatrix} 4 \\ 8 \\ 1 \end{bmatrix}, \quad \mathbf{w} = \begin{bmatrix} 5 \\ 5 \\ 9 \end{bmatrix}

Step 1: Multiply each vector by its scalar coefficient.

  • 5u=5×[345]=[152025]5\mathbf{u} = 5 \times \begin{bmatrix} 3 \\ 4 \\ 5 \end{bmatrix} = \begin{bmatrix} 15 \\ 20 \\ 25 \end{bmatrix}
  • 2v=2×[481]=[8162]2\mathbf{v} = 2 \times \begin{bmatrix} 4 \\ 8 \\ 1 \end{bmatrix} = \begin{bmatrix} 8 \\ 16 \\ 2 \end{bmatrix}
  • 2w=2×[559]=[101018]-2\mathbf{w} = -2 \times \begin{bmatrix} 5 \\ 5 \\ 9 \end{bmatrix} = \begin{bmatrix} -10 \\ -10 \\ -18 \end{bmatrix}

Step 2: Add the vectors.

Now, sum the results:

5u+2v2w=[152025]+[8162]+[101018]5\mathbf{u} + 2\mathbf{v} - 2\mathbf{w} = \begin{bmatrix} 15 \\ 20 \\ 25 \end{bmatrix} + \begin{bmatrix} 8 \\ 16 \\ 2 \end{bmatrix} + \begin{bmatrix} -10 \\ -10 \\ -18 \end{bmatrix}

Perform the addition element-wise:

=[15+81020+161025+218]=[13269]= \begin{bmatrix} 15 + 8 - 10 \\ 20 + 16 - 10 \\ 25 + 2 - 18 \end{bmatrix} = \begin{bmatrix} 13 \\ 26 \\ 9 \end{bmatrix}

Final Answer:

[13269]\begin{bmatrix} 13 \\ 26 \\ 9 \end{bmatrix}

Would you like further details on the steps? Here are some related questions for practice:

  1. How would the result change if we used 3u+4vw3\mathbf{u} + 4\mathbf{v} - \mathbf{w}?
  2. What happens if we swap the roles of vectors u\mathbf{u} and w\mathbf{w} in the original expression?
  3. How do you multiply a scalar by a vector?
  4. What is the geometric interpretation of vector addition?
  5. How could we check the accuracy of our result?

Tip: When performing matrix or vector arithmetic, always handle each component separately and ensure the dimensions match for proper addition.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Vector Arithmetic
Scalar Multiplication
Vector Addition

Formulas

Scalar Multiplication: k * [a, b, c] = [k*a, k*b, k*c]
Vector Addition: [a, b, c] + [x, y, z] = [a+x, b+y, c+z]

Theorems

Basic Properties of Vectors

Suitable Grade Level

Grades 10-12