Math Problem Statement

Olkoon f(x) = 9x^2 + 3 funktio, jonka määritysjoukko Mf =] -∞, -1]. Olkoon edelleen g(x) = -1/3√(x−3) funktio, jonka määritysjoukko Mg = [4, ∞[. Määrää yhdistetyt funktiot f∘g ja g∘f määritysjoukkoineen Mf∘g, Mg∘f. Sievennä vastauksesi. Olkoon h(x) = √(x^2+6)−2, x∈[−2, 0]. Määrää funktion h käänteisfunktio h⁻¹(x) määritysjoukkoineen Mh⁻¹. Anna määritysjoukot muodossa kaarisuluissa {a,b}. Ääretön kirjoitetaan inf.

Solution

Let's go through the steps of solving the problem from the image.

1. Functions and their compositions:

  • f(x)=9x2+3f(x) = 9x^2 + 3, with domain Mf=(,1]M_f = (-\infty, -1]
  • g(x)=13x3g(x) = -\frac{1}{3}\sqrt{x-3}, with domain Mg=[4,)M_g = [4, \infty)

2. Compositions of functions fgf \circ g and gfg \circ f:

  • To find f(g(x))f(g(x)), substitute g(x)g(x) into f(x)f(x): f(g(x))=9(13x3)2+3=919(x3)+3=x3+3=xf(g(x)) = 9 \left( -\frac{1}{3}\sqrt{x-3} \right)^2 + 3 = 9 \cdot \frac{1}{9}(x - 3) + 3 = x - 3 + 3 = x Thus, f(g(x))=xf(g(x)) = x.

  • Now for the domain of fgf \circ g (denoted as MfgM_{f \circ g}), we need g(x)g(x) to produce values in the domain of f(x)f(x), i.e., Mf=(,1]M_f = (-\infty, -1]. This happens when g(x)1g(x) \leq -1.

    We know g(x)=13x3g(x) = -\frac{1}{3}\sqrt{x-3}, and for g(x)1g(x) \leq -1, we solve: 13x31    x33    x39    x12-\frac{1}{3}\sqrt{x-3} \leq -1 \implies \sqrt{x-3} \geq 3 \implies x - 3 \geq 9 \implies x \geq 12 Therefore, the domain of fgf \circ g is Mfg=[12,)M_{f \circ g} = [12, \infty).

  • To find g(f(x))g(f(x)), substitute f(x)f(x) into g(x)g(x): g(f(x))=139x2+33=139x2=xg(f(x)) = -\frac{1}{3}\sqrt{9x^2 + 3 - 3} = -\frac{1}{3}\sqrt{9x^2} = -x Thus, g(f(x))=xg(f(x)) = -x.

  • For the domain of gfg \circ f (denoted as MgfM_{g \circ f}), we need f(x)4f(x) \geq 4 because the domain of g(x)g(x) is Mg=[4,)M_g = [4, \infty). So: 9x2+34    9x21    x219    x139x^2 + 3 \geq 4 \implies 9x^2 \geq 1 \implies x^2 \geq \frac{1}{9} \implies x \leq -\frac{1}{3} Since Mf=(,1]M_f = (-\infty, -1], the domain of gfg \circ f is Mgf=(,13]M_{g \circ f} = (-\infty, -\frac{1}{3}].

3. Inverse of h(x)h(x):

Given h(x)=x2+62h(x) = \sqrt{x^2 + 6} - 2, with domain x[2,0]x \in [-2, 0], we solve for h1(x)h^{-1}(x).

To find the inverse, solve y=x2+62y = \sqrt{x^2 + 6} - 2: y+2=x2+6    (y+2)2=x2+6    x2=(y+2)26y + 2 = \sqrt{x^2 + 6} \implies (y + 2)^2 = x^2 + 6 \implies x^2 = (y + 2)^2 - 6 Taking the square root: x=±(y+2)26x = \pm\sqrt{(y + 2)^2 - 6} Since the domain of h(x)h(x) is [2,0][-2, 0], we take the negative root: h1(x)=(x+2)26h^{-1}(x) = -\sqrt{(x + 2)^2 - 6}

The domain Mh1M_{h^{-1}} corresponds to the range of h(x)h(x). For x[2,0]x \in [-2, 0], the range of h(x)h(x) is [102,62][\sqrt{10} - 2, \sqrt{6} - 2], so: Mh1=[62,102]M_{h^{-1}} = [\sqrt{6} - 2, \sqrt{10} - 2]

Final Answers:

fg=x,Mfg=[12,)f \circ g = x, \quad M_{f \circ g} = [12, \infty) gf=x,Mgf=(,13]g \circ f = -x, \quad M_{g \circ f} = (-\infty, -\frac{1}{3}] h1(x)=(x+2)26,Mh1=[62,102]h^{-1}(x) = -\sqrt{(x + 2)^2 - 6}, \quad M_{h^{-1}} = [\sqrt{6} - 2, \sqrt{10} - 2]


Would you like further details on any specific part? Here are some related questions:

  1. How do we determine the domain of a composite function?
  2. What is the process of finding the inverse of a function?
  3. Why do we take only the negative root in h1(x)h^{-1}(x)?
  4. How does the domain of a square root function affect the solution?
  5. What are the implications of restricting a domain to certain intervals?

Tip: When composing functions, always make sure the range of the inner function fits the domain of the outer function.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Composite Functions
Inverse Functions
Function Domains

Formulas

f(g(x)) = f(g(x))
g(f(x)) = g(f(x))
h⁻¹(x) = Inverse Function Calculation

Theorems

Composition of Functions Theorem
Inverse Function Theorem

Suitable Grade Level

Grades 11-12