Math Problem Statement

Find (fg)(x) and (gf)(x)

 for the pair of functions.   f(x)=x+13/2

g(x)=√4−x

 

Solution

We are asked to find the composite functions (fg)(x)(f \circ g)(x) and (gf)(x)(g \circ f)(x) for the given pair of functions:

  • f(x)=x+132f(x) = x + \frac{13}{2}
  • g(x)=4xg(x) = \sqrt{4 - x}

1. Finding (fg)(x)(f \circ g)(x):

This represents f(g(x))f(g(x)), which means we substitute g(x)g(x) into f(x)f(x).

  • First, recall g(x)=4xg(x) = \sqrt{4 - x}.
  • Now substitute g(x)g(x) into f(x)f(x):

f(g(x))=f(4x)=4x+132f(g(x)) = f(\sqrt{4 - x}) = \sqrt{4 - x} + \frac{13}{2}

Thus,

(fg)(x)=4x+132(f \circ g)(x) = \sqrt{4 - x} + \frac{13}{2}

2. Finding (gf)(x)(g \circ f)(x):

This represents g(f(x))g(f(x)), which means we substitute f(x)f(x) into g(x)g(x).

  • First, recall f(x)=x+132f(x) = x + \frac{13}{2}.
  • Now substitute f(x)f(x) into g(x)g(x):

g(f(x))=g(x+132)=4(x+132)g(f(x)) = g\left(x + \frac{13}{2}\right) = \sqrt{4 - \left(x + \frac{13}{2}\right)}

Simplify the expression inside the square root:

g(f(x))=4x132=82x132=52xg(f(x)) = \sqrt{4 - x - \frac{13}{2}} = \sqrt{\frac{8}{2} - x - \frac{13}{2}} = \sqrt{\frac{-5}{2} - x}

Thus,

(gf)(x)=52x(g \circ f)(x) = \sqrt{\frac{-5}{2} - x}

Summary:

  • (fg)(x)=4x+132(f \circ g)(x) = \sqrt{4 - x} + \frac{13}{2}
  • (gf)(x)=52x(g \circ f)(x) = \sqrt{\frac{-5}{2} - x}

Do you need further details or have any questions?

Here are 5 related questions to explore:

  1. What is the domain of f(x)f(x) and g(x)g(x)?
  2. How do you find the domain of composite functions?
  3. What happens if the result inside the square root is negative?
  4. Can you combine the results of f(x)f(x) and g(x)g(x) in a different way?
  5. How does composition change if g(x)g(x) is more complex?

Tip: Always check the domains when working with composite functions to avoid invalid inputs like negative square roots.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Function Composition
Radical Functions
Algebra

Formulas

f(g(x)) = f(√(4 - x)) = √(4 - x) + 13/2
g(f(x)) = g(x + 13/2) = √(4 - (x + 13/2))

Theorems

Function Composition Theorem

Suitable Grade Level

Grades 10-12