Math Problem Statement

Let z_1 = 2 (cos(2π/5) + i sin(2π/5)) and z_2 = 4 (cos(4π/9) + i sin(4π/9)). Find (a) z_1/z_2 and (b) z_1 * z_2 in trigonometric form.

Solution

We are given two complex numbers in polar (trigonometric) form:

z1=2(cos2π5+isin2π5)z_1 = 2 \left( \cos \frac{2\pi}{5} + i \sin \frac{2\pi}{5} \right) z2=4(cos4π9+isin4π9)z_2 = 4 \left( \cos \frac{4\pi}{9} + i \sin \frac{4\pi}{9} \right)

The task is to find the following in trigonometric form:

  1. (a) The quotient z1z2\frac{z_1}{z_2}.
  2. (b) The product z1z2z_1 z_2.

(a) Finding z1z2\frac{z_1}{z_2}:

In polar form, when dividing two complex numbers z1=r1(cosθ1+isinθ1)z_1 = r_1 (\cos \theta_1 + i \sin \theta_1) and z2=r2(cosθ2+isinθ2)z_2 = r_2 (\cos \theta_2 + i \sin \theta_2), the formula is:

z1z2=r1r2(cos(θ1θ2)+isin(θ1θ2))\frac{z_1}{z_2} = \frac{r_1}{r_2} \left( \cos(\theta_1 - \theta_2) + i \sin(\theta_1 - \theta_2) \right)

Here:

  • r1=2r_1 = 2, θ1=2π5\theta_1 = \frac{2\pi}{5}
  • r2=4r_2 = 4, θ2=4π9\theta_2 = \frac{4\pi}{9}

So: r1r2=24=12\frac{r_1}{r_2} = \frac{2}{4} = \frac{1}{2}

Now for the angle: θ1θ2=2π54π9=18π20π45=2π45\theta_1 - \theta_2 = \frac{2\pi}{5} - \frac{4\pi}{9} = \frac{18\pi - 20\pi}{45} = \frac{-2\pi}{45}

Thus: z1z2=12(cos(2π45)+isin(2π45))\frac{z_1}{z_2} = \frac{1}{2} \left( \cos\left( \frac{-2\pi}{45} \right) + i \sin\left( \frac{-2\pi}{45} \right) \right)

(b) Finding z1z2z_1 z_2:

In polar form, when multiplying two complex numbers z1=r1(cosθ1+isinθ1)z_1 = r_1 (\cos \theta_1 + i \sin \theta_1) and z2=r2(cosθ2+isinθ2)z_2 = r_2 (\cos \theta_2 + i \sin \theta_2), the formula is:

z1z2=r1r2(cos(θ1+θ2)+isin(θ1+θ2))z_1 z_2 = r_1 r_2 \left( \cos(\theta_1 + \theta_2) + i \sin(\theta_1 + \theta_2) \right)

Here:

  • r1=2r_1 = 2, θ1=2π5\theta_1 = \frac{2\pi}{5}
  • r2=4r_2 = 4, θ2=4π9\theta_2 = \frac{4\pi}{9}

So: r1r2=2×4=8r_1 r_2 = 2 \times 4 = 8

For the angle: θ1+θ2=2π5+4π9=18π+20π45=38π45\theta_1 + \theta_2 = \frac{2\pi}{5} + \frac{4\pi}{9} = \frac{18\pi + 20\pi}{45} = \frac{38\pi}{45}

Thus: z1z2=8(cos(38π45)+isin(38π45))z_1 z_2 = 8 \left( \cos\left( \frac{38\pi}{45} \right) + i \sin\left( \frac{38\pi}{45} \right) \right)

Final Answers:

(a) z1z2=12(cos(2π45)+isin(2π45))\frac{z_1}{z_2} = \frac{1}{2} \left( \cos\left( \frac{-2\pi}{45} \right) + i \sin\left( \frac{-2\pi}{45} \right) \right)

(b) z1z2=8(cos(38π45)+isin(38π45))z_1 z_2 = 8 \left( \cos\left( \frac{38\pi}{45} \right) + i \sin\left( \frac{38\pi}{45} \right) \right)


Would you like me to further simplify or explain any steps?

Here are five related questions for deeper understanding:

  1. How do you convert between Cartesian and polar form for complex numbers?
  2. What is the significance of the argument (angle) of a complex number in polar form?
  3. How would the results change if the magnitudes of z1z_1 and z2z_2 were different?
  4. What happens if the angles in a polar representation are negative?
  5. How is the product of two complex numbers in polar form geometrically interpreted?

Tip: Always simplify the angles to lie between 00 and 2π2\pi for a standard representation in polar form.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Complex Numbers
Trigonometric Form
Polar Coordinates
Multiplication and Division of Complex Numbers

Formulas

z_1/z_2 = (r_1/r_2)(cos(θ_1 - θ_2) + i sin(θ_1 - θ_2))
z_1 * z_2 = r_1 * r_2 (cos(θ_1 + θ_2) + i sin(θ_1 + θ_2))

Theorems

De Moivre's Theorem

Suitable Grade Level

Grades 11-12