Math Problem Statement

löse

Es gilt: z1 = 1 - i, z2 = 3 + 4i, z3 = e^(iπ/2), z4 = 2e^(-iπ/4). Bestimme jeweils in kartesischer Form: a) z1 - z2 + e^(iπ), b) z3/z4, c) z3 + z4.

Solution

Let's break down the problem based on the content of the image you uploaded. You are given the following complex numbers in polar or exponential form:

  • z1=1iz_1 = 1 - i
  • z2=3+4iz_2 = 3 + 4i
  • z3=eiπ2z_3 = e^{i\frac{\pi}{2}}
  • z4=2eiπ4z_4 = 2e^{-i\frac{\pi}{4}}

The goal is to convert each of these into their Cartesian (rectangular) form, and possibly perform operations between them. Let's solve the individual parts:

a) z1z2+eiπz_1 - z_2 + e^{i\pi}

  1. z1=1iz_1 = 1 - i
  2. z2=3+4iz_2 = 3 + 4i
  3. eiπ=1e^{i\pi} = -1 (this is Euler's identity)

First, calculate z1z2z_1 - z_2: z1z2=(1i)(3+4i)=1i34i=25iz_1 - z_2 = (1 - i) - (3 + 4i) = 1 - i - 3 - 4i = -2 - 5i

Now, add eiπ=1e^{i\pi} = -1: (25i)+(1)=35i(-2 - 5i) + (-1) = -3 - 5i

Thus, the result for part a) is: z1z2+eiπ=35iz_1 - z_2 + e^{i\pi} = -3 - 5i

b) z3z4\frac{z_3}{z_4}

  1. z3=eiπ2z_3 = e^{i\frac{\pi}{2}} which corresponds to ii in Cartesian form (since eiπ2=cos(π2)+isin(π2)=ie^{i\frac{\pi}{2}} = \cos\left(\frac{\pi}{2}\right) + i\sin\left(\frac{\pi}{2}\right) = i).
  2. z4=2eiπ4z_4 = 2e^{-i\frac{\pi}{4}}

Now we compute z3z4\frac{z_3}{z_4}: z3z4=i2eiπ4=i2eiπ4\frac{z_3}{z_4} = \frac{i}{2e^{-i\frac{\pi}{4}}} = \frac{i}{2} e^{i\frac{\pi}{4}} Using eiπ4=cos(π4)+isin(π4)=22+i22e^{i\frac{\pi}{4}} = \cos\left(\frac{\pi}{4}\right) + i\sin\left(\frac{\pi}{4}\right) = \frac{\sqrt{2}}{2} + i\frac{\sqrt{2}}{2}, the expression becomes: i2(22+i22)\frac{i}{2} \left( \frac{\sqrt{2}}{2} + i\frac{\sqrt{2}}{2} \right) Distribute i2\frac{i}{2}:

= \frac{i\sqrt{2}}{4} - \frac{\sqrt{2}}{4}$$ Thus, the result for part b) is: $$\frac{z_3}{z_4} = -\frac{\sqrt{2}}{4} + \frac{i\sqrt{2}}{4}$$ ### c) $$z_3 + z_4$$ Finally, let's compute the sum of $$z_3$$ and $$z_4$$: $$z_3 = e^{i\frac{\pi}{2}} = i, \quad z_4 = 2e^{-i\frac{\pi}{4}}$$ We can use the polar form of $$z_4$$ directly, or express it in Cartesian form: $$z_4 = 2\left( \frac{\sqrt{2}}{2} - i\frac{\sqrt{2}}{2} \right) = \sqrt{2} - i\sqrt{2}$$ Now add $$z_3$$ and $$z_4$$: $$z_3 + z_4 = i + (\sqrt{2} - i\sqrt{2}) = \sqrt{2} + i(1 - \sqrt{2})$$ Thus, the result for part c) is: $$z_3 + z_4 = \sqrt{2} + i(1 - \sqrt{2})$$ --- Would you like further explanations or any additional details on any of the steps?

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Complex Numbers
Cartesian Form
Exponential Form
Polar Coordinates

Formulas

Euler's formula: e^(iθ) = cos(θ) + i sin(θ)
Addition/Subtraction of complex numbers
Division of complex numbers in exponential form

Theorems

Euler's Identity
Properties of Complex Numbers

Suitable Grade Level

Undergraduate Mathematics or Advanced High School