Math Problem Statement

Consider two functions defined by f(x) = x(x + 4) and g(x) = x(x - 4). Complete the value table for each function, then determine the x-axis intercepts and the vertex of each graph.

Solution

Let's go through this problem step-by-step.

Step 1: Analyze the functions

We have two functions defined as:

  1. f(x)=x(x+4)f(x) = x(x + 4)
  2. g(x)=x(x4)g(x) = x(x - 4)

Step 2: Expand each function

  1. For f(x)f(x): f(x)=x(x+4)=x2+4xf(x) = x(x + 4) = x^2 + 4x This is a quadratic function in the form f(x)=ax2+bx+cf(x) = ax^2 + bx + c with a=1a = 1, b=4b = 4, and c=0c = 0.

  2. For g(x)g(x): g(x)=x(x4)=x24xg(x) = x(x - 4) = x^2 - 4x This is another quadratic function in the form g(x)=ax2+bx+cg(x) = ax^2 + bx + c with a=1a = 1, b=4b = -4, and c=0c = 0.

Step 3: Complete the tables

Let's evaluate each function at the given values of xx.

For f(x)=x2+4xf(x) = x^2 + 4x:

  • f(5)=(5)2+4(5)=2520=5f(-5) = (-5)^2 + 4(-5) = 25 - 20 = 5
  • f(4)=(4)2+4(4)=1616=0f(-4) = (-4)^2 + 4(-4) = 16 - 16 = 0
  • f(3)=(3)2+4(3)=912=3f(-3) = (-3)^2 + 4(-3) = 9 - 12 = -3
  • f(2)=(2)2+4(2)=48=4f(-2) = (-2)^2 + 4(-2) = 4 - 8 = -4
  • f(1)=(1)2+4(1)=14=3f(-1) = (-1)^2 + 4(-1) = 1 - 4 = -3
  • f(0)=(0)2+4(0)=0f(0) = (0)^2 + 4(0) = 0
  • f(1)=(1)2+4(1)=1+4=5f(1) = (1)^2 + 4(1) = 1 + 4 = 5
  • f(2)=(2)2+4(2)=4+8=12f(2) = (2)^2 + 4(2) = 4 + 8 = 12
  • f(3)=(3)2+4(3)=9+12=21f(3) = (3)^2 + 4(3) = 9 + 12 = 21
  • f(4)=(4)2+4(4)=16+16=32f(4) = (4)^2 + 4(4) = 16 + 16 = 32
  • f(5)=(5)2+4(5)=25+20=45f(5) = (5)^2 + 4(5) = 25 + 20 = 45

For g(x)=x24xg(x) = x^2 - 4x:

  • g(5)=(5)24(5)=25+20=45g(-5) = (-5)^2 - 4(-5) = 25 + 20 = 45
  • g(4)=(4)24(4)=16+16=32g(-4) = (-4)^2 - 4(-4) = 16 + 16 = 32
  • g(3)=(3)24(3)=9+12=21g(-3) = (-3)^2 - 4(-3) = 9 + 12 = 21
  • g(2)=(2)24(2)=4+8=12g(-2) = (-2)^2 - 4(-2) = 4 + 8 = 12
  • g(1)=(1)24(1)=1+4=5g(-1) = (-1)^2 - 4(-1) = 1 + 4 = 5
  • g(0)=(0)24(0)=0g(0) = (0)^2 - 4(0) = 0
  • g(1)=(1)24(1)=14=3g(1) = (1)^2 - 4(1) = 1 - 4 = -3
  • g(2)=(2)24(2)=48=4g(2) = (2)^2 - 4(2) = 4 - 8 = -4
  • g(3)=(3)24(3)=912=3g(3) = (3)^2 - 4(3) = 9 - 12 = -3
  • g(4)=(4)24(4)=1616=0g(4) = (4)^2 - 4(4) = 16 - 16 = 0
  • g(5)=(5)24(5)=2520=5g(5) = (5)^2 - 4(5) = 25 - 20 = 5

Step 4: Identify intercepts and vertices

  1. Intercepts with the x-axis (where f(x)=0f(x) = 0 or g(x)=0g(x) = 0):

    • For f(x)=x(x+4)f(x) = x(x + 4): The x-intercepts are x=0x = 0 and x=4x = -4.
    • For g(x)=x(x4)g(x) = x(x - 4): The x-intercepts are x=0x = 0 and x=4x = 4.
  2. Vertices:

    • For f(x)=x2+4xf(x) = x^2 + 4x: The vertex is at x=b2a=42=2x = -\frac{b}{2a} = -\frac{4}{2} = -2. Substituting x=2x = -2 into f(x)f(x): f(2)=(2)2+4(2)=48=4f(-2) = (-2)^2 + 4(-2) = 4 - 8 = -4 So, the vertex for f(x)f(x) is at (2,4)(-2, -4).

    • For g(x)=x24xg(x) = x^2 - 4x: The vertex is at x=b2a=42=2x = -\frac{b}{2a} = -\frac{-4}{2} = 2. Substituting x=2x = 2 into g(x)g(x): g(2)=(2)24(2)=48=4g(2) = (2)^2 - 4(2) = 4 - 8 = -4 So, the vertex for g(x)g(x) is at (2,4)(2, -4).

Final Answers

  • For f(x)f(x):

    • Table values: Calculated above.
    • X-intercepts: x=0x = 0 and x=4x = -4.
    • Vertex: (2,4)(-2, -4).
  • For g(x)g(x):

    • Table values: Calculated above.
    • X-intercepts: x=0x = 0 and x=4x = 4.
    • Vertex: (2,4)(2, -4).

Would you like more detailed explanations for any specific part?

Additional Questions:

  1. What would the y-intercept be for each function?
  2. How does the vertex form of a quadratic function help in identifying the vertex quickly?
  3. How would the graphs of f(x)f(x) and g(x)g(x) compare visually?
  4. How do the x-intercepts relate to the factors of each function?
  5. Can you find the axis of symmetry for each function?

Tip:

When finding the vertex of a quadratic function in standard form ax2+bx+cax^2 + bx + c, use the formula x=b2ax = -\frac{b}{2a} for the x-coordinate of the vertex.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Algebra
Quadratic Functions
Graph Analysis

Formulas

Quadratic formula f(x) = ax^2 + bx + c
Vertex formula x = -b / 2a

Theorems

Properties of Parabolas
Intercepts of Quadratic Functions

Suitable Grade Level

Grades 8-10