Math Problem Statement
Find the common multiples of 3 and 4 between 20 and 30
Solution
To find the common multiples of 3 and 4 between 20 and 30, we first need to find the least common multiple (LCM) of 3 and 4.
- The multiples of 3 are: 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, ...
- The multiples of 4 are: 4, 8, 12, 16, 20, 24, 28, 32, ...
The least common multiple of 3 and 4 is 12.
Now, to find the common multiples between 20 and 30:
- The common multiples of 3 and 4 are: 12, 24, 36, ...
So, the only common multiple of 3 and 4 between 20 and 30 is 24.
Would you like more details or have any other questions?
Here are 5 related questions for you:
- What is the LCM of 6 and 8 between 50 and 100?
- How do you find the greatest common divisor (GCD) of two numbers?
- What are the common factors of 12 and 18?
- How can we use prime factorization to find the LCM?
- What is the next common multiple of 3 and 4 after 24?
Tip: To find the least common multiple of two numbers, you can multiply the numbers and divide by their greatest common divisor (GCD).
Ask a new question for Free
By Image
Drop file here or Click Here to upload
Math Problem Analysis
Mathematical Concepts
Multiples
Least Common Multiple (LCM)
Formulas
LCM(a, b) = (a * b) / GCD(a, b)
Theorems
Least Common Multiple (LCM) Theorem
Suitable Grade Level
Grades 5-7