Math Problem Statement

Vektorijoukot S1 = {(1,2,0), (1,3,2), (0,1,3)} ja S2 = {(1,2,1), (0,1,2), (1,4,6)} ovat R^3:n kantoja. Vektorin v koordinaatit kannassa S1 ovat 2, 0 ja 1. Määritä tarvittava kannanvaihtomatriisi ja laske sen avulla v:n koordinaatit kannassa S2. Mitkä ovat vektorin v koordinaatit luonnollisessa kannassa?

Solution

To solve this problem, let's break it into parts:

Problem Breakdown:

  1. Understand the given bases:

    • S1={(1,2,0),(1,3,2),(0,1,3)}S_1 = \{ (1, 2, 0), (1, 3, 2), (0, 1, 3) \}
    • S2={(1,2,1),(0,1,2),(1,4,6)}S_2 = \{ (1, 2, 1), (0, 1, 2), (1, 4, 6) \}
  2. Input vector: The coordinates of vector v\vec{v} in basis S1S_1 are [201]\begin{bmatrix} 2 \\ 0 \\ 1 \end{bmatrix}.

  3. Tasks:

    • Determine the change of basis matrix from S1S_1 to S2S_2.
    • Use the change of basis matrix to calculate the coordinates of v\vec{v} in S2S_2.
    • Determine the natural (standard) coordinates of v\vec{v} in R3\mathbb{R}^3.

Step 1: Change of Basis Matrix

To find the change of basis matrix PP from S1S_1 to S2S_2, we follow this procedure:

  • First, express the vectors in S2S_2 in terms of the basis S1S_1.
  • Solve for the transformation matrix PP.

The relationship between the bases can be written as: [ P \cdot [\vec{v}]{S_1} = [\vec{v}]{S_2} ]


Step 2: Compute Natural Coordinates

The vector v\vec{v} can also be expressed in the natural (standard) basis R3\mathbb{R}^3 using the original coordinates in S1S_1 and the vectors in S1S_1: vnatural=2(1,2,0)+0(1,3,2)+1(0,1,3).\vec{v}_{\text{natural}} = 2 \cdot (1, 2, 0) + 0 \cdot (1, 3, 2) + 1 \cdot (0, 1, 3).


Let me calculate these steps in detail.import numpy as np

Basis vectors for S1 and S2

S1 = np.array([[1, 2, 0], [1, 3, 2], [0, 1, 3]]).T # Basis S1 as columns S2 = np.array([[1, 2, 1], [0, 1, 2], [1, 4, 6]]).T # Basis S2 as columns

Coordinates of v in basis S1

v_S1 = np.array([2, 0, 1])

Compute the change of basis matrix P (from S1 to S2)

First, express S2 in terms of S1

P = np.linalg.solve(S1, S2)

Compute v in basis S2 using P

v_S2 = P @ v_S1

Compute v in the natural (standard) basis using S1

v_natural = S1 @ v_S1

P, v_S2, v_natural(array([[ 2., -1., 1.], [-1., 1., 0.], [ 1., 0., 2.]]), array([ 5., -2., 4.]), array([2, 5, 3]))(array([[ 2., -1., 1.], [-1., 1., 0.], [ 1., 0., 2.]]), array([ 5., -2., 4.]), array([2, 5, 3]))success### Results:

  1. Change of Basis Matrix PP from S1S_1 to S2S_2: \begin{bmatrix} 2 & -1 & 1 \\ -1 & 1 & 0 \\ 1 & 0 & 2 \end{bmatrix}$$
  2. Coordinates of v\vec{v} in Basis S2S_2: \begin{bmatrix} 5 \\ -2 \\ 4 \end{bmatrix}$$
  3. Coordinates of v\vec{v} in the Natural (Standard) Basis: \begin{bmatrix} 2 \\ 5 \\ 3 \end{bmatrix}$$

Would you like a detailed explanation of any of these steps? Here are some additional questions to explore:

  1. How is the change of basis matrix calculated in general?
  2. What does the matrix PP tell us about the relationship between S1S_1 and S2S_2?
  3. How can we verify the computed vS2\vec{v}_{S_2}?
  4. Why do we need the natural coordinates of v\vec{v}?
  5. How can this process be extended to higher dimensions?

Tip: Understanding change of basis is key to transitioning between different coordinate systems in vector spaces.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Linear Algebra
Basis and Coordinate Transformation
Matrix Operations

Formulas

Change of Basis: P * [v]_S1 = [v]_S2
Natural Coordinates: v_natural = S1 * [v]_S1

Theorems

Linear Independence of Basis Vectors
Matrix Inversion for Change of Basis

Suitable Grade Level

University Level (Linear Algebra)