Math Problem Statement

Let f(s,t) = (s - t + 2, e^{2s + 3t}, s \cos t) and g(x,y,z) = (xyz, x^2 + z^3). Use the chain rule to find D(f ∘ g)(0,0,0).

Solution

We are given two functions f(s,t)=(st+2,e2s+3t,scost)f(s,t) = (s - t + 2, e^{2s + 3t}, s \cos t) and g(x,y,z)=(xyz,x2+z3)g(x, y, z) = (xyz, x^2 + z^3), and we are tasked with finding the derivative D(fg)(0,0,0)D(f \circ g)(0, 0, 0) using the chain rule.

Step 1: Understanding the Composition of Functions

We need to compute the derivative of the composition f(g(x,y,z))f(g(x, y, z)). The chain rule for multivariable functions states that:

D(fg)(x,y,z)=Df(g(x,y,z))Dg(x,y,z)D(f \circ g)(x, y, z) = Df(g(x, y, z)) \cdot Dg(x, y, z)

Where DfDf is the Jacobian matrix of ff, and DgDg is the Jacobian matrix of gg.

Step 2: Find Dg(x,y,z)Dg(x, y, z)

The Jacobian matrix Dg(x,y,z)Dg(x, y, z) is given by the partial derivatives of gg:

g(x,y,z)=(xyz,x2+z3)g(x, y, z) = (xyz, x^2 + z^3)

So the partial derivatives are:

\begin{pmatrix} \frac{\partial}{\partial x}(xyz) & \frac{\partial}{\partial y}(xyz) & \frac{\partial}{\partial z}(xyz) \\ \frac{\partial}{\partial x}(x^2 + z^3) & \frac{\partial}{\partial y}(x^2 + z^3) & \frac{\partial}{\partial z}(x^2 + z^3) \end{pmatrix} = \begin{pmatrix} yz & xz & xy \\ 2x & 0 & 3z^2 \end{pmatrix}$$ At the point $$(0, 0, 0)$$, this becomes: $$Dg(0, 0, 0) = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$ ### Step 3: Find $$Df(s, t)$$ Next, we need the Jacobian matrix of $$f(s, t) = (s - t + 2, e^{2s + 3t}, s \cos t)$$. The partial derivatives of $$f$$ are: $$Df(s, t) = \begin{pmatrix} \frac{\partial}{\partial s}(s - t + 2) & \frac{\partial}{\partial t}(s - t + 2) \\ \frac{\partial}{\partial s}(e^{2s + 3t}) & \frac{\partial}{\partial t}(e^{2s + 3t}) \\ \frac{\partial}{\partial s}(s \cos t) & \frac{\partial}{\partial t}(s \cos t) \end{pmatrix} = \begin{pmatrix} 1 & -1 \\ 2e^{2s + 3t} & 3e^{2s + 3t} \\ \cos t & -s \sin t \end{pmatrix}$$ At the point $$(0, 0)$$, this becomes: $$Df(0, 0) = \begin{pmatrix} 1 & -1 \\ 2 & 3 \\ 1 & 0 \end{pmatrix}$$ ### Step 4: Applying the Chain Rule Now, using the chain rule $$D(f \circ g)(0, 0, 0) = Df(g(0, 0, 0)) \cdot Dg(0, 0, 0)$$, we first compute $$g(0, 0, 0)$$: $$g(0, 0, 0) = (0 \cdot 0 \cdot 0, 0^2 + 0^3) = (0, 0)$$ So we need $$Df(g(0, 0, 0)) = Df(0, 0)$$, which is: $$Df(0, 0) = \begin{pmatrix} 1 & -1 \\ 2 & 3 \\ 1 & 0 \end{pmatrix}$$ Now, multiply $$Df(0, 0)$$ by $$Dg(0, 0, 0)$$: $$D(f \circ g)(0, 0, 0) = Df(0, 0) \cdot Dg(0, 0, 0) = \begin{pmatrix} 1 & -1 \\ 2 & 3 \\ 1 & 0 \end{pmatrix} \cdot \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$ Thus, $$D(f \circ g)(0, 0, 0) = 0$$, which is the zero matrix. ### Final Answer: $$D(f \circ g)(0, 0, 0) = 0$$ Would you like further clarification or any more details? Here are some questions to explore further: 1. What is the general formula for the chain rule in higher dimensions? 2. How do you calculate the Jacobian matrix for non-linear functions? 3. What does the zero Jacobian matrix imply about the behavior of the function at this point? 4. How does the composition of functions affect the rank of the Jacobian? 5. Can the chain rule be extended to vector-valued functions in a different manner? **Tip:** Always verify the intermediate steps, such as computing partial derivatives and evaluating them at given points, to avoid errors when using the chain rule.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Multivariable Calculus
Chain Rule
Jacobian Matrix

Formulas

Chain Rule: D(f ∘ g)(x, y, z) = Df(g(x, y, z)) ⋅ Dg(x, y, z)
Jacobian Matrix: Derivatives of vector functions

Theorems

Chain Rule for Multivariable Functions

Suitable Grade Level

Undergraduate