Math Problem Statement

Use the chain rule to find dz dt . z = x2 + y2 + xy, x = sin(t), y = 3et dz dt

Solution

To find dzdt\frac{dz}{dt} using the chain rule, we need to differentiate z=x2+y2+xyz = x^2 + y^2 + xy with respect to tt, using the given functions x(t)=sin(t)x(t) = \sin(t) and y(t)=3ety(t) = 3e^t.

Step-by-step solution:

  1. Differentiate zz with respect to xx and yy: zx=2x+y\frac{\partial z}{\partial x} = 2x + y zy=2y+x\frac{\partial z}{\partial y} = 2y + x

  2. Use the chain rule: dzdt=zxdxdt+zydydt\frac{dz}{dt} = \frac{\partial z}{\partial x} \frac{dx}{dt} + \frac{\partial z}{\partial y} \frac{dy}{dt}

  3. Find dxdt\frac{dx}{dt} and dydt\frac{dy}{dt}:

    • x(t)=sin(t)x(t) = \sin(t), so dxdt=cos(t)\frac{dx}{dt} = \cos(t)
    • y(t)=3ety(t) = 3e^t, so dydt=3et\frac{dy}{dt} = 3e^t
  4. Substitute the values: dzdt=(2x+y)cos(t)+(2y+x)3et\frac{dz}{dt} = (2x + y)\cos(t) + (2y + x)3e^t

  5. Now substitute x=sin(t)x = \sin(t) and y=3ety = 3e^t: dzdt=(2sin(t)+3et)cos(t)+(2(3et)+sin(t))3et\frac{dz}{dt} = (2\sin(t) + 3e^t)\cos(t) + (2(3e^t) + \sin(t))3e^t

  6. Simplify the expression: dzdt=(2sin(t)+3et)cos(t)+(6et+sin(t))3et\frac{dz}{dt} = (2\sin(t) + 3e^t)\cos(t) + (6e^t + \sin(t))3e^t dzdt=2sin(t)cos(t)+3etcos(t)+18e2t+3etsin(t)\frac{dz}{dt} = 2\sin(t)\cos(t) + 3e^t\cos(t) + 18e^{2t} + 3e^t\sin(t)

Thus, the final expression for dzdt\frac{dz}{dt} is: dzdt=2sin(t)cos(t)+3etcos(t)+18e2t+3etsin(t)\boxed{\frac{dz}{dt} = 2\sin(t)\cos(t) + 3e^t\cos(t) + 18e^{2t} + 3e^t\sin(t)}

Let me know if you need further explanation or have any questions about the process!

Follow-up Questions:

  1. How do we apply the product rule in this context for mixed terms like xyxy?
  2. Can you provide an example where the chain rule is applied in a multivariable context?
  3. How would the chain rule work in cases where zz is a function of more than two variables?
  4. How can we simplify expressions like 2sin(t)cos(t)2\sin(t)\cos(t) further using trigonometric identities?
  5. What happens if x(t)x(t) and y(t)y(t) are more complex functions, say involving powers or more trigonometric functions?

Tip:

When applying the chain rule, always remember to differentiate each variable in terms of tt, and then combine the results carefully.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Calculus
Chain Rule
Partial Derivatives
Trigonometric Functions
Exponential Functions

Formulas

Chain Rule: dz/dt = (∂z/∂x)(dx/dt) + (∂z/∂y)(dy/dt)
Partial derivatives: ∂z/∂x = 2x + y, ∂z/∂y = 2y + x

Theorems

Chain Rule for Multivariable Functions
Product Rule

Suitable Grade Level

Grades 11-12 (Calculus)