Math Problem Statement

Give me 5 chain rule example

Solution

Here are five examples of derivatives using the chain rule:

Example 1

Find the derivative of:
f(x)=(3x2+5)4f(x) = (3x^2 + 5)^4

Solution

Let u=3x2+5u = 3x^2 + 5, then f(x)=u4f(x) = u^4.
Using the chain rule:
ddxu4=4u3dudx\frac{d}{dx} u^4 = 4u^3 \cdot \frac{du}{dx}
Since dudx=6x\frac{du}{dx} = 6x, we get:
f(x)=4(3x2+5)36x=24x(3x2+5)3f'(x) = 4(3x^2 + 5)^3 \cdot 6x = 24x(3x^2 + 5)^3


Example 2

Find the derivative of:
f(x)=sin(5x3+2x)f(x) = \sin(5x^3 + 2x)

Solution

Let u=5x3+2xu = 5x^3 + 2x, then f(x)=sinuf(x) = \sin u.
Using the chain rule:
ddxsinu=cosududx\frac{d}{dx} \sin u = \cos u \cdot \frac{du}{dx}
Since dudx=15x2+2\frac{du}{dx} = 15x^2 + 2, we get:
f(x)=cos(5x3+2x)(15x2+2)f'(x) = \cos(5x^3 + 2x) \cdot (15x^2 + 2)


Example 3

Find the derivative of:
f(x)=ex2+1f(x) = e^{\sqrt{x^2 + 1}}

Solution

Let u=x2+1u = \sqrt{x^2 + 1}, then f(x)=euf(x) = e^u.
Using the chain rule:
ddxeu=eududx\frac{d}{dx} e^u = e^u \cdot \frac{du}{dx}
Since u=(x2+1)1/2u = (x^2 + 1)^{1/2}, its derivative is:
dudx=12(x2+1)1/22x=xx2+1\frac{du}{dx} = \frac{1}{2}(x^2 + 1)^{-1/2} \cdot 2x = \frac{x}{\sqrt{x^2 + 1}}
Thus,
f(x)=ex2+1xx2+1f'(x) = e^{\sqrt{x^2 + 1}} \cdot \frac{x}{\sqrt{x^2 + 1}}


Example 4

Find the derivative of:
f(x)=ln(2x2+3x+1)f(x) = \ln(2x^2 + 3x + 1)

Solution

Let u=2x2+3x+1u = 2x^2 + 3x + 1, then f(x)=lnuf(x) = \ln u.
Using the chain rule:
ddxlnu=1ududx\frac{d}{dx} \ln u = \frac{1}{u} \cdot \frac{du}{dx}
Since dudx=4x+3\frac{du}{dx} = 4x + 3, we get:
f(x)=4x+32x2+3x+1f'(x) = \frac{4x + 3}{2x^2 + 3x + 1}


Example 5

Find the derivative of:
f(x)=(x3+4x+7)10f(x) = (x^3 + 4x + 7)^{10}

Solution

Let u=x3+4x+7u = x^3 + 4x + 7, then f(x)=u10f(x) = u^{10}.
Using the chain rule:
ddxu10=10u9dudx\frac{d}{dx} u^{10} = 10u^9 \cdot \frac{du}{dx}
Since dudx=3x2+4\frac{du}{dx} = 3x^2 + 4, we get:
f(x)=10(x3+4x+7)9(3x2+4)f'(x) = 10(x^3 + 4x + 7)^9 \cdot (3x^2 + 4)


Would you like further explanation on any of these?

Related Questions:

  1. How does the chain rule relate to implicit differentiation?
  2. Can the chain rule be applied multiple times in a function?
  3. What is the difference between the product rule and the chain rule?
  4. How do you apply the chain rule when differentiating trigonometric functions?
  5. How does the chain rule extend to partial derivatives in multivariable calculus?

Tip: Always identify the inner function before applying the chain rule!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Differentiation
Chain Rule
Calculus

Formulas

\frac{d}{dx} [f(g(x))] = f'(g(x)) \cdot g'(x)
Derivative of e^u = e^u \cdot \frac{du}{dx}
Derivative of \sin(u) = \cos(u) \cdot \frac{du}{dx}
Derivative of \ln(u) = \frac{1}{u} \cdot \frac{du}{dx}

Theorems

Chain Rule

Suitable Grade Level

Grades 11-12