Math Problem Statement

Solve all math probelms

Solve all math problems

Solution

The page contains various calculus problems. Let's go step by step to solve each problem. I'll break down the exercises according to the order given in the image.


Beispiel 2: Tangentengleichung und Steigungswinkel

We are tasked to find the equation of the tangent at a given point and the angle of inclination of the tangent with the horizontal axis.

Given:

  • Function f(x)=x35xf(x) = x^3 - 5x
  • Point P(1f(1))P(-1|f(-1))

Solution:

  1. Derive the function:

    • f(x)=3x25f'(x) = 3x^2 - 5
    • f(1)=3(1)25=35=2f'(-1) = 3(-1)^2 - 5 = 3 - 5 = -2
  2. The slope of the tangent is 2-2. Using the point-slope form of the tangent line:

    • yf(1)=2(x+1)y - f(-1) = -2(x + 1)
    • f(1)=(1)35(1)=1+5=4f(-1) = (-1)^3 - 5(-1) = -1 + 5 = 4
    • So, the tangent equation becomes: y4=2(x+1)y - 4 = -2(x + 1), simplified: y=2x+2y = -2x + 2
  3. Angle of inclination:

    • tan(α)=f(1)=2\tan(\alpha) = f'(-1) = -2
    • α=arctan(2)63.4\alpha = \arctan(-2) \approx -63.4^\circ

Aufgaben (Exercises)

O1: Berechnen Sie die erste und zweite Ableitung (first and second derivatives) der Funktion f

a) f(x)=2sin(x)+x3f(x) = 2\sin(x) + x^{-3}

  • First derivative: f(x)=2cos(x)3x4f'(x) = 2\cos(x) - 3x^{-4}
  • Second derivative: f(x)=2sin(x)+12x5f''(x) = -2\sin(x) + 12x^{-5}

b) f(t)=4t33tf(t) = -4t^3 - 3t

  • First derivative: f(t)=12t23f'(t) = -12t^2 - 3
  • Second derivative: f(t)=24tf''(t) = -24t

c) f(t)=t4ttf(t) = \frac{t^4 - \sqrt{t}}{t}

  • First derivative: f(t)=4t312t1/2tf'(t) = \frac{4t^3 - \frac{1}{2}t^{-1/2}}{t}

d) f(s)=s53s5f(s) = \frac{\sqrt{s}}{5} - \frac{3}{s^5}

  • First derivative: f(s)=110s+15s6f'(s) = \frac{1}{10\sqrt{s}} + 15s^{-6}
  • Second derivative: f(s)=120s3/290s7f''(s) = -\frac{1}{20s^{3/2}} - 90s^{-7}

e) f(x)=cos(x)+1x2f(x) = -\cos(x) + \frac{1}{x^2}

  • First derivative: f(x)=sin(x)2x3f'(x) = \sin(x) - 2x^{-3}
  • Second derivative: f(x)=cos(x)+6x4f''(x) = \cos(x) + 6x^{-4}

f) f(x)=13x+3cos(x)f(x) = \frac{1}{\sqrt{3x}} + 3\cos(x)

  • First derivative: f(x)=12(3x)3/2+3sin(x)f'(x) = -\frac{1}{2}(3x)^{-3/2} + 3\sin(x)
  • Second derivative: f(x)=34(3x)5/2+3cos(x)f''(x) = \frac{3}{4}(3x)^{-5/2} + 3\cos(x)

O2: Berechnen Sie die erste Ableitung der Funktion f (First Derivatives)

a) f(x)=(x+4)2f(x) = (x + 4)^2

  • First derivative: f(x)=2(x+4)f'(x) = 2(x + 4)

b) f(s)=(2s4)(4s)f(s) = (2s - 4)(4 - s)

  • First derivative: Apply product rule
  • f(s)=(2)(4s)+(2s4)(1)=82s2s+4=124sf'(s) = (2)(4 - s) + (2s - 4)(-1) = 8 - 2s - 2s + 4 = 12 - 4s

c) f(x)=x(x+1x2)f(x) = x \cdot \left( x + \frac{1}{x^2} \right)

  • First derivative: Apply product and quotient rules
  • ( f'(x) = 1(x + \frac{1}{x^2}) + x\left(1 - \frac{2}{x^3}\

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Derivatives
Tangent Line Equations
Trigonometry
First and Second Derivatives
Function Graph Interpretation

Formulas

Tangent Line: y - f(a) = f'(a)(x - a)
Derivative of sin(x): cos(x)
Product Rule: (uv)' = u'v + uv'
Quotient Rule: (u/v)' = (v*u' - u*v')/v^2
Chain Rule: (f(g(x)))' = f'(g(x)) * g'(x)

Theorems

Derivative Theorem
Trigonometric Derivative Rules
Tangent Line Slope Formula

Suitable Grade Level

Grades 10-12