Math Problem Statement

Find the exact value of each of the remaining trigonometric functions of θ. Rationalize denominators when applicable.

Solution

To find the exact values of the remaining trigonometric functions given that sinθ=26\sin \theta = \frac{\sqrt{2}}{6} and cosθ>0\cos \theta > 0, we proceed as follows:

1. Find cosθ\cos \theta:

Using the Pythagorean identity: sin2θ+cos2θ=1\sin^2 \theta + \cos^2 \theta = 1

Substitute sinθ=26\sin \theta = \frac{\sqrt{2}}{6}: (26)2+cos2θ=1\left( \frac{\sqrt{2}}{6} \right)^2 + \cos^2 \theta = 1 236+cos2θ=1\frac{2}{36} + \cos^2 \theta = 1 118+cos2θ=1\frac{1}{18} + \cos^2 \theta = 1 cos2θ=1118=1718\cos^2 \theta = 1 - \frac{1}{18} = \frac{17}{18} Since cosθ>0\cos \theta > 0: cosθ=1718=1732=346\cos \theta = \sqrt{\frac{17}{18}} = \frac{\sqrt{17}}{3\sqrt{2}} = \frac{\sqrt{34}}{6}

2. Find tanθ\tan \theta:

tanθ=sinθcosθ=26346=234=2343434=6834=21734=1717\tan \theta = \frac{\sin \theta}{\cos \theta} = \frac{\frac{\sqrt{2}}{6}}{\frac{\sqrt{34}}{6}} = \frac{\sqrt{2}}{\sqrt{34}} = \frac{\sqrt{2}}{\sqrt{34}} \cdot \frac{\sqrt{34}}{\sqrt{34}} = \frac{\sqrt{68}}{34} = \frac{2\sqrt{17}}{34} = \frac{\sqrt{17}}{17}

3. Find cscθ\csc \theta:

cscθ=1sinθ=62=32\csc \theta = \frac{1}{\sin \theta} = \frac{6}{\sqrt{2}} = 3\sqrt{2}

4. Find secθ\sec \theta:

secθ=1cosθ=634=63434=33417\sec \theta = \frac{1}{\cos \theta} = \frac{6}{\sqrt{34}} = \frac{6\sqrt{34}}{34} = \frac{3\sqrt{34}}{17}

5. Find cotθ\cot \theta:

cotθ=1tanθ=11717=1717=17\cot \theta = \frac{1}{\tan \theta} = \frac{1}{\frac{\sqrt{17}}{17}} = \frac{17}{\sqrt{17}} = \sqrt{17}

Would you like any further details on these calculations, or do you have any specific questions?

Related Questions:

  1. How would the values change if cosθ<0\cos \theta < 0?
  2. Can you verify these trigonometric identities using a unit circle approach?
  3. What are the values of the trigonometric functions in other quadrants?
  4. How do these calculations change for other trigonometric identities, such as cos2θ\cos 2\theta?
  5. Can you show the geometric interpretation of these values on a coordinate plane?

Tip: For trigonometric functions, always use identities like the Pythagorean identity and reciprocal identities to simplify your calculations and ensure the values are correct.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Trigonometry
Pythagorean Identity
Rationalizing Denominators

Formulas

sin^2(θ) + cos^2(θ) = 1
tan(θ) = sin(θ)/cos(θ)
csc(θ) = 1/sin(θ)
sec(θ) = 1/cos(θ)
cot(θ) = 1/tan(θ)

Theorems

Pythagorean Identity

Suitable Grade Level

Grades 10-12