Math Problem Statement

Calculate the following limits using Riemann sums: 1. \( \lim_{n \to \infty} \left( \sum_{k=1}^n \frac{n}{n^2 + k^2} \right) \) 2. \( \lim_{n \to \infty} \left( \sum_{k=1}^n \frac{k}{n^2 + k^2} \right) \) 3. \( \lim_{n \to \infty} \left( \frac{1}{n} \sum_{k=1}^{n-1} \frac{k}{\sqrt{n^2 - k^2}} \right) \)

Solution

The problem asks us to calculate the limits of certain sums using the Riemann sum approach. Here's a breakdown of the exercise:

Problem 1:

We are tasked to calculate the following limits:

  1. limn(k=1nnn2+k2)\lim_{n \to \infty} \left( \sum_{k=1}^n \frac{n}{n^2 + k^2} \right)
  2. limn(k=1nkn2+k2)\lim_{n \to \infty} \left( \sum_{k=1}^n \frac{k}{n^2 + k^2} \right)
  3. limn(1nk=1n1kn2k2)\lim_{n \to \infty} \left( \frac{1}{n} \sum_{k=1}^{n-1} \frac{k}{\sqrt{n^2 - k^2}} \right)

Let me solve these step by step:


1.

The sum can be interpreted as a Riemann sum. Rewrite the term inside: nn2+k2=1n11+(kn)2\frac{n}{n^2 + k^2} = \frac{1}{n} \cdot \frac{1}{1 + \left(\frac{k}{n}\right)^2}

Using the Riemann sum definition, where xk=knx_k = \frac{k}{n}, the sum becomes: k=1nnn2+k20111+x2dxas n\sum_{k=1}^n \frac{n}{n^2 + k^2} \to \int_0^1 \frac{1}{1 + x^2} \, dx \quad \text{as } n \to \infty

The integral evaluates to: 0111+x2dx=[arctan(x)]01=arctan(1)arctan(0)=π4\int_0^1 \frac{1}{1 + x^2} \, dx = \left[ \arctan(x) \right]_0^1 = \arctan(1) - \arctan(0) = \frac{\pi}{4}

Thus: limnk=1nnn2+k2=π4\lim_{n \to \infty} \sum_{k=1}^n \frac{n}{n^2 + k^2} = \frac{\pi}{4}


2.

Similarly, rewrite the term inside: kn2+k2\frac{k}{n^2 + k^2} This requires careful treatment. Rewrite it as: kn2+k2=knn+(kn)2\frac{k}{n^2 + k^2} = \frac{\frac{k}{n}}{n + \left(\frac{k}{n}\right)^2}

Using the substitution xk=knx_k = \frac{k}{n}, the sum approximates: k=1nkn2+k201x1+x2dxas n\sum_{k=1}^n \frac{k}{n^2 + k^2} \to \int_0^1 \frac{x}{1 + x^2} \, dx \quad \text{as } n \to \infty

The integral evaluates to: 01x1+x2dx=12ln(1+x2)01=12ln(2)0=ln(2)2\int_0^1 \frac{x}{1 + x^2} \, dx = \frac{1}{2} \ln(1 + x^2) \bigg|_0^1 = \frac{1}{2} \ln(2) - 0 = \frac{\ln(2)}{2}

Thus: limnk=1nkn2+k2=ln(2)2\lim_{n \to \infty} \sum_{k=1}^n \frac{k}{n^2 + k^2} = \frac{\ln(2)}{2}


3.

Here, we have: 1nk=1n1kn2k2\frac{1}{n} \sum_{k=1}^{n-1} \frac{k}{\sqrt{n^2 - k^2}}

The term inside the sum becomes: kn2k2=kn1(kn)2\frac{k}{\sqrt{n^2 - k^2}} = \frac{\frac{k}{n}}{\sqrt{1 - \left(\frac{k}{n}\right)^2}}

Using xk=knx_k = \frac{k}{n}, the sum approximates: [ \frac

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Calculus
Limits
Riemann Sums
Integral Calculus

Formulas

Riemann sum approximation \( \lim_{n \to \infty} \sum_{k=1}^n f\left( \frac{k}{n} \right) \frac{1}{n} = \int_0^1 f(x) \, dx \)

Theorems

Limit definition
Integral approximation using Riemann sums

Suitable Grade Level

University Level