Math Problem Statement

Express the limits in Exercises 1-8 as definite integrals.

Solution

The given problems involve expressing Riemann sums as definite integrals. Let’s rewrite each limit as a definite integral:

Problem 1:

limP0k=1nck2Δxk, where P is a partition of [0,2].\lim_{\|P\|\to 0} \sum_{k=1}^n c_k^2 \Delta x_k, \text{ where } P \text{ is a partition of } [0, 2]. This is a Riemann sum for the function f(x)=x2f(x) = x^2 on the interval [0,2][0, 2]. The integral is: 02x2dx.\int_0^2 x^2 \, dx.


Problem 2:

limP0k=1n2ck3Δxk, where P is a partition of [1,0].\lim_{\|P\|\to 0} \sum_{k=1}^n 2c_k^3 \Delta x_k, \text{ where } P \text{ is a partition of } [-1, 0]. This is a Riemann sum for the function f(x)=2x3f(x) = 2x^3 on the interval [1,0][-1, 0]. The integral is: 102x3dx.\int_{-1}^0 2x^3 \, dx.


Problem 3:

limP0k=1n(ck23ck)Δxk, where P is a partition of [7,5].\lim_{\|P\|\to 0} \sum_{k=1}^n (c_k^2 - 3c_k) \Delta x_k, \text{ where } P \text{ is a partition of } [-7, 5]. This is a Riemann sum for the function f(x)=x23xf(x) = x^2 - 3x on the interval [7,5][-7, 5]. The integral is: 75(x23x)dx.\int_{-7}^5 (x^2 - 3x) \, dx.


Problem 4:

limP0k=1n(1ck)Δxk, where P is a partition of [1,4].\lim_{\|P\|\to 0} \sum_{k=1}^n \left(\frac{1}{c_k}\right) \Delta x_k, \text{ where } P \text{ is a partition of } [1, 4]. This is a Riemann sum for the function f(x)=1xf(x) = \frac{1}{x} on the interval [1,4][1, 4]. The integral is: 141xdx.\int_1^4 \frac{1}{x} \, dx.


Problem 5:

limP0k=1n11ckΔxk, where P is a partition of [2,3].\lim_{\|P\|\to 0} \sum_{k=1}^n \frac{1}{1 - c_k} \Delta x_k, \text{ where } P \text{ is a partition of } [2, 3]. This is a Riemann sum for the function f(x)=11xf(x) = \frac{1}{1 - x} on the interval [2,3][2, 3]. The integral is: 2311xdx.\int_2^3 \frac{1}{1 - x} \, dx.


Would you like me to compute these integrals or provide further explanations?

Related Questions:

  1. How do you evaluate the definite integral of a polynomial function like x2x^2?
  2. What is the significance of the Riemann sum in defining the integral?
  3. How do you deal with integrals of rational functions, such as 1x\frac{1}{x}?
  4. What happens if the function is not continuous in the interval of integration?
  5. Can a Riemann sum converge to an improper integral if the interval is infinite?

Tip:

Always analyze the function in the Riemann sum to identify the corresponding integral’s limits and integrand.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Riemann Sums
Definite Integrals
Integration

Formulas

Riemann Sum Formula: lim_{||P|| -> 0} Σ f(c_k)Δx_k ≈ ∫ f(x) dx
Definite Integral as the limit of Riemann sums

Theorems

Fundamental Theorem of Calculus

Suitable Grade Level

Undergraduate Level or Advanced High School (Grades 11-12)