Math Problem Statement

14

Solution

Question 14:
"Dalam suatu reuni dihadiri oleh 8 orang. Jika mereka berjabat tangan masing-masing satu kali, maka banyak jabat tangan pada reuni tersebut adalah ...."

This problem is asking for the number of handshakes at a gathering where 8 people attend, and each pair of people shakes hands exactly once.

Solution:

The formula to determine the number of unique handshakes in a group of nn people is:

Handshakes=n(n1)2\text{Handshakes} = \frac{n(n - 1)}{2}

Where nn is the number of people. For this case, n=8n = 8:

[ \text{Handshakes} = \frac{8(8 - 1)}{2} = \frac{8 \times 7}{2} = \frac

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Combinatorics
Counting Principles

Formulas

Handshakes = n(n - 1)/2

Theorems

Combination Formula

Suitable Grade Level

Grades 6-8