Math Problem Statement

In a class of 20 students each student was to shake hands with every other studentz but half the boys refused tk shake hands wjth one third of the girls. Which of the options could be the total number of handshakes 190 184 170 166

Solution

To find the total number of handshakes among 20 students, we can start with the total possible handshakes if everyone shakes hands with everyone else.

  1. Total possible handshakes: The formula for the total number of handshakes (combinations of 2 from nn) is given by:

    Total handshakes=n(n1)2\text{Total handshakes} = \frac{n(n-1)}{2}

    For n=20n = 20:

    Total handshakes=20×192=190\text{Total handshakes} = \frac{20 \times 19}{2} = 190

  2. Adjust for refusals:

    • Let bb be the number of boys and gg be the number of girls in the class such that b+g=20b + g = 20.
    • Half of the boys refuse to shake hands with one third of the girls.

    Let's denote:

    • Half of the boys = b2\frac{b}{2}
    • One third of the girls = g3\frac{g}{3}

    The number of handshakes not made is:

    Refused handshakes=b2×g3\text{Refused handshakes} = \frac{b}{2} \times \frac{g}{3}

    The total handshakes would then be:

    Actual handshakes=190(b2×g3)\text{Actual handshakes} = 190 - \left(\frac{b}{2} \times \frac{g}{3}\right)

  3. Finding possible values: Since b+g=20b + g = 20, we can explore different values of bb and gg.

    • For example, if b=10b = 10 and g=10g = 10:

      Refused handshakes=102×103=5×103=50316.67 (not an integer)\text{Refused handshakes} = \frac{10}{2} \times \frac{10}{3} = 5 \times \frac{10}{3} = \frac{50}{3} \approx 16.67 \text{ (not an integer)}

    • If b=12b = 12 and g=8g = 8:

      Refused handshakes=122×83=6×83=16 (valid)\text{Refused handshakes} = \frac{12}{2} \times \frac{8}{3} = 6 \times \frac{8}{3} = 16 \text{ (valid)} Actual handshakes=19016=174\text{Actual handshakes} = 190 - 16 = 174

    • If b=14b = 14 and g=6g = 6:

      Refused handshakes=142×63=7×2=14 (valid)\text{Refused handshakes} = \frac{14}{2} \times \frac{6}{3} = 7 \times 2 = 14 \text{ (valid)} Actual handshakes=19014=176\text{Actual handshakes} = 190 - 14 = 176

    • If b=16b = 16 and g=4g = 4:

      Refused handshakes=162×43=8×43=32310.67 (not an integer)\text{Refused handshakes} = \frac{16}{2} \times \frac{4}{3} = 8 \times \frac{4}{3} = \frac{32}{3} \approx 10.67 \text{ (not an integer)}

    • If b=18b = 18 and g=2g = 2:

      Refused handshakes=182×23=9×23=6 (valid)\text{Refused handshakes} = \frac{18}{2} \times \frac{2}{3} = 9 \times \frac{2}{3} = 6 \text{ (valid)} Actual handshakes=1906=184\text{Actual handshakes} = 190 - 6 = 184

From these calculations, the valid options for total handshakes are 190 and 184.

Thus, the possible total number of handshakes from the given options is 184.

Would you like to explore further details or have any questions? Here are some follow-up questions:

  1. What is the total number of handshakes if all students shake hands?
  2. How would the result change if all students shook hands without any refusals?
  3. Can you explain why the refusal to shake hands affects the total?
  4. How would you calculate handshakes in a different sized class?
  5. What if instead, all boys and girls shook hands with only their respective genders?

Tip: Always check the calculations for refusals carefully, as they can affect the final tally significantly.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Combinatorics
Counting Principle
Basic Algebra

Formulas

Total possible handshakes formula: n(n-1)/2

Theorems

Combination formula for selecting pairs

Suitable Grade Level

Grades 9-10