Math Problem Statement

The position of an object moving along a line is given by the function st) = - 16? + 96t. Find the average velocity of the object over the following intervals. (a) [1, 6] (c) [1, 4] (b) [1, 5] (d) [1, 1 + h] where h > 0 is any real number.

Solution

To find the average velocity of an object over a specific interval, we use the formula:

Average velocity over [a,b]=s(b)s(a)ba\text{Average velocity over } [a, b] = \frac{s(b) - s(a)}{b - a}

where s(t)s(t) is the position function of the object.

Given the position function:

s(t)=16t2+96ts(t) = -16t^2 + 96t

we'll compute the average velocity for each interval.

(a) Interval [1,6][1, 6]

Substitute t=1t = 1 and t=6t = 6 into the position function:

s(1)=16(1)2+96(1)=16+96=80s(1) = -16(1)^2 + 96(1) = -16 + 96 = 80

s(6)=16(6)2+96(6)=16(36)+576=576+576=0s(6) = -16(6)^2 + 96(6) = -16(36) + 576 = -576 + 576 = 0

The average velocity over the interval [1,6][1, 6] is:

Average velocity=s(6)s(1)61=0805=805=16\text{Average velocity} = \frac{s(6) - s(1)}{6 - 1} = \frac{0 - 80}{5} = \frac{-80}{5} = -16

(b) Interval [1,5][1, 5]

Substitute t=1t = 1 and t=5t = 5 into the position function:

s(5)=16(5)2+96(5)=16(25)+480=400+480=80s(5) = -16(5)^2 + 96(5) = -16(25) + 480 = -400 + 480 = 80

The average velocity over the interval [1,5][1, 5] is:

Average velocity=s(5)s(1)51=80804=04=0\text{Average velocity} = \frac{s(5) - s(1)}{5 - 1} = \frac{80 - 80}{4} = \frac{0}{4} = 0

(c) Interval [1,4][1, 4]

Substitute t=1t = 1 and t=4t = 4 into the position function:

s(4)=16(4)2+96(4)=16(16)+384=256+384=128s(4) = -16(4)^2 + 96(4) = -16(16) + 384 = -256 + 384 = 128

The average velocity over the interval [1,4][1, 4] is:

Average velocity=s(4)s(1)41=128803=483=16\text{Average velocity} = \frac{s(4) - s(1)}{4 - 1} = \frac{128 - 80}{3} = \frac{48}{3} = 16

(d) Interval [1,1+h][1, 1 + h] where h>0h > 0

To find the average velocity over the interval [1,1+h][1, 1 + h], we use:

Average velocity=s(1+h)s(1)(1+h)1=s(1+h)s(1)h\text{Average velocity} = \frac{s(1 + h) - s(1)}{(1 + h) - 1} = \frac{s(1 + h) - s(1)}{h}

First, compute s(1+h)s(1 + h):

s(1+h)=16(1+h)2+96(1+h)s(1 + h) = -16(1 + h)^2 + 96(1 + h)

Expand and simplify:

s(1+h)=16(1+2h+h2)+96+96h=(1632h16h2)+96+96hs(1 + h) = -16(1 + 2h + h^2) + 96 + 96h = (-16 - 32h - 16h^2) + 96 + 96h

s(1+h)=16h2+64h+80s(1 + h) = -16h^2 + 64h + 80

Now, compute the difference:

s(1+h)s(1)=(16h2+64h+80)80=16h2+64hs(1 + h) - s(1) = (-16h^2 + 64h + 80) - 80 = -16h^2 + 64h

Thus, the average velocity is:

Average velocity=16h2+64hh=16h+64\text{Average velocity} = \frac{-16h^2 + 64h}{h} = -16h + 64

Summary of Results:

(a) Average velocity over [1,6][1, 6] = 16-16

(b) Average velocity over [1,5][1, 5] = 00

(c) Average velocity over [1,4][1, 4] = 1616

(d) Average velocity over [1,1+h][1, 1 + h] = 16h+64-16h + 64

Would you like more details or have any other questions?

Related Questions:

  1. What is the instantaneous velocity of the object at t=2t = 2?
  2. How does the average velocity change as hh approaches 0 for interval [1,1+h][1, 1 + h]?
  3. What is the acceleration of the object at any time tt?
  4. What is the significance of negative average velocity?
  5. Can you interpret the motion of the object using the position function?

Tip: The instantaneous velocity is the derivative of the position function s(t)s(t).

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Calculus
Average Velocity
Quadratic Functions

Formulas

Average velocity over [a, b] = (s(b) - s(a)) / (b - a)

Theorems

-

Suitable Grade Level

Grades 11-12