Math Problem Statement

let a⃗ =4i^−11j^+17k^ , b⃗ =i^+4j^+6k^ and c⃗ =−i^+3j^−5k^ , then a⃗ −b⃗ +c⃗ =

Solution

Given the vectors a=4i11j+17k\mathbf{a} = 4\mathbf{i} - 11\mathbf{j} + 17\mathbf{k}, b=i+4j+6k\mathbf{b} = \mathbf{i} + 4\mathbf{j} + 6\mathbf{k}, and c=i+3j5k\mathbf{c} = -\mathbf{i} + 3\mathbf{j} - 5\mathbf{k}, we need to calculate the vector expression ab+c\mathbf{a} - \mathbf{b} + \mathbf{c}.

Step-by-Step Solution

  1. Subtract b\mathbf{b} from a\mathbf{a}:

    ab=(4i11j+17k)(i+4j+6k)\mathbf{a} - \mathbf{b} = \left(4\mathbf{i} - 11\mathbf{j} + 17\mathbf{k}\right) - \left(\mathbf{i} + 4\mathbf{j} + 6\mathbf{k}\right)

    Subtracting the corresponding components:

    =(41)i+(114)j+(176)k= \left(4 - 1\right)\mathbf{i} + \left(-11 - 4\right)\mathbf{j} + \left(17 - 6\right)\mathbf{k}

    =3i15j+11k= 3\mathbf{i} - 15\mathbf{j} + 11\mathbf{k}

  2. Add c\mathbf{c} to the result:

    ab+c=(3i15j+11k)+(i+3j5k)\mathbf{a} - \mathbf{b} + \mathbf{c} = \left(3\mathbf{i} - 15\mathbf{j} + 11\mathbf{k}\right) + \left(-\mathbf{i} + 3\mathbf{j} - 5\mathbf{k}\right)

    Adding the corresponding components:

    =(31)i+(15+3)j+(115)k= \left(3 - 1\right)\mathbf{i} + \left(-15 + 3\right)\mathbf{j} + \left(11 - 5\right)\mathbf{k}

    =2i12j+6k= 2\mathbf{i} - 12\mathbf{j} + 6\mathbf{k}

Final Answer

ab+c=2i12j+6k\mathbf{a} - \mathbf{b} + \mathbf{c} = 2\mathbf{i} - 12\mathbf{j} + 6\mathbf{k}

Would you like further details or have any questions?

Here are 5 related questions:

  1. What is the magnitude of the resulting vector ab+c\mathbf{a} - \mathbf{b} + \mathbf{c}?
  2. How would you find the direction angles of the vector ab+c\mathbf{a} - \mathbf{b} + \mathbf{c}?
  3. If a\mathbf{a} and b\mathbf{b} were perpendicular, what would their dot product be?
  4. How would you compute the cross product of a\mathbf{a} and b\mathbf{b}?
  5. How does vector subtraction differ from scalar subtraction in terms of operations?

Tip: When working with vectors, always align corresponding components when adding or subtracting to ensure accuracy.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Vectors
Vector operations

Formulas

-

Theorems

-

Suitable Grade Level

Grades 11-12