Math Problem Statement

help me solve: Calculate the surface area generated when the cycloid {x=a(t sin(t)), y=a(1 cos(t))} (0≤t≤2π), is revolved about the x-axis. The a represents a positive constant. Hint: The required derivatives start out looking a little scary, but everything simplifies dramatically, and the final answer is very simple.

Solution

To calculate the surface area generated when the cycloid {x=a(tsin(t)),y=a(1cos(t))}\{x = a(t - \sin(t)), y = a(1 - \cos(t))\} (where 0t2π0 \leq t \leq 2\pi) is revolved about the xx-axis, we use the formula for the surface area of a curve revolved about the xx-axis:

A=2πaby(dxdt)2+(dydt)2dtA = 2\pi \int_{a}^{b} y \sqrt{ \left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2 } \, dt

Here, y=a(1cos(t))y = a(1 - \cos(t)), and x=a(tsin(t))x = a(t - \sin(t)). The interval for tt is from 00 to 2π2\pi.

First, we need to find the derivatives dxdt\frac{dx}{dt} and dydt\frac{dy}{dt}:

dxdt=a(1cos(t))\frac{dx}{dt} = a(1 - \cos(t)) dydt=asin(t)\frac{dy}{dt} = a\sin(t)

Next, we compute the integrand:

[ \sqrt{ \left( \frac{dx}{dt} \right)^2 + \left( \frac{dy}{dt} \right)^2 } = \sqrt{ \left[ a(1 - \cos(t)) \right]^2 + \left[ a\sin(t) \right]^2 } ]

Simplify inside the square root:

a2(1cos(t))2+a2sin2(t)=a(1cos(t))2+sin2(t)\sqrt{a^2 (1 - \cos(t))^2 + a^2 \sin^2(t)} = a \sqrt{ (1 - \cos(t))^2 + \sin^2(t) }

Using the Pythagorean identity, (1cos(t))2+sin2(t)=2(1cos(t))(1 - \cos(t))^2 + \sin^2(t) = 2(1 - \cos(t)):

a2(1cos(t))=a2(1cos(t))a \sqrt{ 2(1 - \cos(t)) } = a \sqrt{ 2(1 - \cos(t)) }

Therefore, the integrand simplifies to:

a2(1cos(t))a \sqrt{ 2(1 - \cos(t)) }

The surface area integral becomes:

A=2π02πa(1cos(t))a2(1cos(t))dtA = 2\pi \int_{0}^{2\pi} a(1 - \cos(t)) \cdot a \sqrt{2(1 - \cos(t))} \, dt

A=2πa202π(1cos(t))2(1cos(t))dtA = 2\pi a^2 \int_{0}^{2\pi} (1 - \cos(t)) \sqrt{2(1 - \cos(t))} \, dt

Let u=1cos(t)u = 1 - \cos(t), then du=sin(t)dtdu = \sin(t) \, dt, and when tt ranges from 00 to 2π2\pi, uu ranges from 00 to 22. Also, note that sin2(t)=1cos2(t)\sin^2(t) = 1 - \cos^2(t):

A=2πa202π(1cos(t))2(1cos(t))dtA = 2\pi a^2 \int_{0}^{2\pi} (1 - \cos(t)) \sqrt{2(1 - \cos(t))} \, dt

Changing the variable:

=2πa202u2udusin(t)= 2\pi a^2 \int_{0}^{2} u \sqrt{2u} \, \frac{du}{\sin(t)}

Now, integrating by simplifying the integral:

=2πa2022u3/2du= 2\pi a^2 \int_{0}^{2} \sqrt{2} u^{3/2} \, du

=2πa2202u3/2du= 2\pi a^2 \sqrt{2} \int_{0}^{2} u^{3/2} \, du

=2πa22[25u5/2]02= 2\pi a^2 \sqrt{2} \left[ \frac{2}{5} u^{5/2} \right]_{0}^{2}

Evaluating the integral at the bounds:

=2πa22[25(2)5/20]= 2\pi a^2 \sqrt{2} \left[ \frac{2}{5} (2)^{5/2} - 0 \right]

=2πa22[2542]= 2\pi a^2 \sqrt{2} \left[ \frac{2}{5} \cdot 4\sqrt{2} \right]

=2πa22[825]= 2\pi a^2 \sqrt{2} \left[ \frac{8\sqrt{2}}{5} \right]

=2πa2825= 2\pi a^2 \frac{8 \cdot 2}{5}

=2πa2165= 2\pi a^2 \frac{16}{5}

=32πa25= \frac{32\pi a^2}{5}

Therefore, the surface area AA generated when the cycloid is revolved about the xx-axis is:

A=32πa25A = \frac{32\pi a^2}{5}

Do you have any questions or need further details?

Additional Questions

  1. What is the significance of the cycloid in mathematics?
  2. Can you derive the length of one arch of the cycloid?
  3. How does the integral change if we revolve the cycloid about the yy-axis?
  4. What happens to the surface area if aa is doubled?
  5. How can this method be generalized for other parametric curves?
  6. Can we use numerical integration methods to approximate the surface area for more complex curves?
  7. What are some real-world applications of cycloid curves?
  8. How does the surface area change if the curve is revolved around a different axis?

Tip

When working with parametric curves, always check for possible simplifications using trigonometric identities or substitutions to make the integrals more manageable.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Parametric Equations
Surface Area of Revolution
Trigonometric Identities
Integration

Formulas

Surface area of revolution formula

Theorems

Pythagorean identity

Suitable Grade Level

Advanced Undergraduate