Math Problem Statement

Find the surface area generated by the revolution of an arc of the Catenary y = c cosh(x/a) about the x-axis from x=0 to x=c.

Solution

The surface area SS of a curve y=f(x)y = f(x) revolved around the x-axis from x=ax = a to x=bx = b is given by the formula:

S=ab2πy1+(dydx)2dxS = \int_a^b 2\pi y \sqrt{1 + \left(\frac{dy}{dx}\right)^2} \,dx

For the given catenary:

y=ccosh(x/a)y = c \cosh(x/a)

Step 1: Compute dy/dxdy/dx

The derivative of yy is:

dydx=csinh(x/a)1a=casinh(x/a)\frac{dy}{dx} = c \sinh(x/a) \cdot \frac{1}{a} = \frac{c}{a} \sinh(x/a)

Thus,

(dydx)2=(casinh(x/a))2=c2a2sinh2(x/a)\left(\frac{dy}{dx}\right)^2 = \left(\frac{c}{a} \sinh(x/a)\right)^2 = \frac{c^2}{a^2} \sinh^2(x/a)

Step 2: Compute 1+(dy/dx)2\sqrt{1 + (dy/dx)^2}

1+c2a2sinh2(x/a)\sqrt{1 + \frac{c^2}{a^2} \sinh^2(x/a)}

Using the identity:

1+sinh2(x/a)=cosh2(x/a)1 + \sinh^2(x/a) = \cosh^2(x/a)

we get:

1+c2a2sinh2(x/a)=a2+c2sinh2(x/a)a2=cacosh(x/a)\sqrt{1 + \frac{c^2}{a^2} \sinh^2(x/a)} = \sqrt{\frac{a^2 + c^2 \sinh^2(x/a)}{a^2}} = \frac{c}{a} \cosh(x/a)

Step 3: Compute the Surface Area Integral

S=0c2πccosh(x/a)cacosh(x/a)dxS = \int_0^c 2\pi c \cosh(x/a) \cdot \frac{c}{a} \cosh(x/a) \,dx

S=2πc2a0ccosh2(x/a)dxS = \frac{2\pi c^2}{a} \int_0^c \cosh^2(x/a) \,dx

Using the identity:

cosh2u=1+cosh2u2\cosh^2 u = \frac{1 + \cosh 2u}{2}

we rewrite the integral:

cosh2(x/a)dx=12(1+cosh(2x/a))dx\int \cosh^2(x/a) \,dx = \frac{1}{2} \int (1 + \cosh(2x/a)) \,dx

=12(x+a2sinh(2x/a))= \frac{1}{2} \left( x + \frac{a}{2} \sinh(2x/a) \right)

Evaluating from 00 to cc:

0ccosh2(x/a)dx=12(c+a2sinh(2c/a)0a2sinh0)\int_0^c \cosh^2(x/a) \,dx = \frac{1}{2} \left( c + \frac{a}{2} \sinh(2c/a) - 0 - \frac{a}{2} \sinh 0 \right)

=12(c+a2sinh(2c/a))= \frac{1}{2} \left( c + \frac{a}{2} \sinh(2c/a) \right)

Step 4: Compute the Final Expression for SS

S=2πc2a×12(c+a2sinh(2c/a))S = \frac{2\pi c^2}{a} \times \frac{1}{2} \left( c + \frac{a}{2} \sinh(2c/a) \right)

=πc2a(c+a2sinh(2c/a))= \frac{\pi c^2}{a} \left( c + \frac{a}{2} \sinh(2c/a) \right)

=πc2(ca+12sinh(2c/a))= \pi c^2 \left(\frac{c}{a} + \frac{1}{2} \sinh(2c/a) \right)

Thus, the surface area is:

S=πc2(ca+12sinh(2c/a))S = \pi c^2 \left(\frac{c}{a} + \frac{1}{2} \sinh(2c/a) \right)


Would you like me to simplify it further or provide numerical evaluations for specific values of aa and cc?

Related Questions:

  1. How do you derive the arc length of a catenary curve?
  2. What is the volume of the solid formed by revolving the same catenary around the x-axis?
  3. How does the surface area change as cc \to \infty?
  4. What happens to the surface area if the catenary is rotated about the y-axis instead?
  5. Can we generalize this result for a catenary of the form y=Acosh(x/B)y = A \cosh(x/B)?

Math Tip:

Hyperbolic functions, like cosh(x)\cosh(x) and sinh(x)\sinh(x), often simplify problems involving catenary curves, as they have identities similar to trigonometric functions but with exponential properties.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Calculus
Surface Area of Revolution
Hyperbolic Functions
Catenary Curves

Formulas

Surface Area of Revolution: S = ∫_a^b 2πy √(1 + (dy/dx)^2) dx
Derivative of y = c cosh(x/a): dy/dx = (c/a) sinh(x/a)
Identity: 1 + sinh^2(x/a) = cosh^2(x/a)

Theorems

Surface Area of a Solid of Revolution
Hyperbolic Function Identities

Suitable Grade Level

College-level Calculus