Math Problem Statement
Apply the concept in the given situations below.
Find the speed of sound in a school canteen where the temperature is 33 0C?
Formula: v = 331 m/s + (0.6 m/s 0C) x T
What is the speed of sound in a place where the temperature is – 2.5 0C?
Formula: v = 331 m/s + (0.6 m/s 0C) x T
Solution
To find the speed of sound in air at different temperatures, we can use the formula provided:
where:
- is the speed of sound in meters per second (m/s).
- is the temperature in degrees Celsius (\degree\text{C}).
1. Speed of Sound in the School Canteen at 33 \degree\text{C}
Given that the temperature :
Calculating the value:
So, the speed of sound in the school canteen at 33 \degree\text{C} is 350.8 m/s.
2. Speed of Sound in a Place at -2.5 \degree\text{C}
Given that the temperature :
Calculating the value:
So, the speed of sound in a place at -2.5 \degree\text{C} is 329.5 m/s.
Summary of Results:
- Speed of sound at 33 \degree\text{C}: 350.8 m/s
- Speed of sound at -2.5 \degree\text{C}: 329.5 m/s
Would you like more details or have any questions?
Here are some related questions you might find interesting:
- What is the effect of humidity on the speed of sound?
- How does altitude affect the speed of sound in the air?
- Why does the speed of sound change with temperature?
- How does the speed of sound in water compare to that in air at the same temperature?
- What are some practical applications of knowing the speed of sound at different temperatures?
Tip: The speed of sound in air increases with temperature because warmer air has faster-moving molecules, allowing sound waves to travel more quickly.
Ask a new question for Free
By Image
Drop file here or Click Here to upload
Math Problem Analysis
Mathematical Concepts
Physics
Speed of Sound
Temperature Effects
Formulas
Speed of sound formula v = 331 m/s + (0.6 m/s °C) × T
Theorems
-
Suitable Grade Level
High School